OCT 12, 2015 7:10 PM PDT

Metabolic Engineering in Ten Easy Steps

WRITTEN BY: Kerry Evans
Bacteria have the capacity to produce numerous substances for commercial and industrial applications. Despite this, very few strains are being used on an industrial scale, likely because such “metabolic engineering” requires a hefty investment.  Investigators at the Korea Advanced Institute of Science and Technology (KAIST) estimate that it requires anywhere from 50 to 300 person-years of work (!) and several hundred million dollars to engineer strains and implement their use on a large scale.  To stream-line the process, KAIST researchers Sang Yup Lee and Hyun Uk Kim recently published ten strategies to develop industrial microbial strains.
 
Korean scientists publish ten step "toolkit" for metabolic engineering.


Metabolic engineering seeks to optimize existing pathways in a cell to more efficiently produce a desired metabolite.  Often, this requires some degree of genetic engineering.  Strains of E. coli are already used to produce amino acids such as L-valine, L-lysine, L-arginine, and L-threonine, chemicals such as butanol, and succinic acid, as well as the anti-parasitic drug artemisinin.  Microbes can also be used to produce biofuels such as short-chain and fatty alcohols to replace gasoline and diesel.  

Lee and Kim’s ten strategies guide researchers from choosing the appropriate host strain, to implementing its use on a commercial scale.  They stress first and foremost the need to choose the most economically viable strain, giving special consideration to how easily particular strains can be genetically engineered.  When it comes to reconstructing or optimizing metabolic pathways, they recommend the use of “chemo-bioinformatic” tools to construct the most efficient pathways.  They also recommend removing any feedback inhibition controls that could diminish the amount of metabolite produced.  Another important consideration is how well the bacteria will tolerate the overproduction of certain metabolites, so called “product tolerance”.  It may be possible to greatly increase the amount of product made, but this may also inhibit the bacteria’s growth.  A final step in the development process is to ensure that engineered strains can be grown on a commercial scale, since oxygen and other nutrients can become limiting factors in large-scale cultures.            

According to Lee, “At the moment, the chance of commercializing microbial strains developed in academic labs is very low...We hope that these strategies contribute to improving opportunities to commercializing microbial strains developed in academic labs with drastically reduced costs and efforts, and that a large fraction of petroleum-based processes will be replaced with sustainable bioprocesses”.

Sources: Eurekalert, Nature Biotechnology, Wikipedia
 
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUN 07, 2020
Microbiology
Infants Exposed to Antibiotics are at Greater Risk for Childhood Obesity
JUN 07, 2020
Infants Exposed to Antibiotics are at Greater Risk for Childhood Obesity
The human gut hosts a huge community of microbes, potentially even before birth, which helps us digest and absorb nutrie ...
JUL 03, 2020
Microbiology
Oxford COVID-19 Vaccine Enters Phase 3 Clinical Trials
JUL 03, 2020
Oxford COVID-19 Vaccine Enters Phase 3 Clinical Trials
Millions of people around the world have been infected with the coronavirus called SARS-CoV-2, which causes COVID-19. Th ...
JUL 07, 2020
Immunology
A Step Towards a Cure for Rare Polio-Like Disease in Children
JUL 07, 2020
A Step Towards a Cure for Rare Polio-Like Disease in Children
Acute flaccid myelitis, or AFM, is a rare but devastatingly debilitating neurologic disease in children caused by a resp ...
JUL 07, 2020
Microbiology
Why Some Are Naturally Better at Preventing Urinary Tract Infections
JUL 07, 2020
Why Some Are Naturally Better at Preventing Urinary Tract Infections
Urinary tract infections can be very painful and can cause nausea, chills, and fever. A pathogenic strain of E. coli is ...
JUL 20, 2020
Microbiology
Evidence Continues to Support Universal Masking in the Fight Against COVID-19
JUL 20, 2020
Evidence Continues to Support Universal Masking in the Fight Against COVID-19
As the COVID-9 pandemic has spread around the world, scientists have tried to learn as much as they can about it, includ ...
JUL 27, 2020
Microbiology
Vikings Carried, and Helped Spread Smallpox
JUL 27, 2020
Vikings Carried, and Helped Spread Smallpox
A global vaccination effort led to the official eradication of smallpox, but not before it killed over 300 million peopl ...
Loading Comments...