SEP 09, 2020 5:19 PM PDT

Changing How We Think of Drug Resistance in Fungi

WRITTEN BY: Carmen Leitch

In pathogenic microbes, scientists have typically traced drug resistance to a gene or a change in a gene. It was thought that fungi also developed drug resistance because of mutations in their DNA, and currently, genetic sequencing is used to assess drug resistance in fungi. Scientists have now found, however, that fungi can gain resistance to antifungal drugs without any change in their genetic code. The findings have been reported in Nature.

Under a magnification of 23X, this image depicted a close view of a Candida tropicalis fungal colony / Credit: CDC/ Dr. Hardin

It's been estimated that fungal infections cause more than one million deaths worldwide, and many more people are affected. Fungal pathogens include species of Aspergillus, Candida, and Cryptococcus, and they can be difficult to treat. There are not many effective antifungal drugs, and the infections are especially dangerous for people with compromised immune systems.

The researchers determined that actually, it's changes in the fungal epigenome that enable them to become drug-resistant. Epigenetics refers to heritable genetic changes that are not written in the DNA sequence. Often, they are chemical tags on the genome, but they can also involve the proteins that organize DNA, which may expose or hide some genes. Since genetic sequencing is used to look for drug resistance in fungi, this study suggests that many cases have been missed.

"Our study shows for the first time that fungal cells can develop drug resistance by altering how their DNA is packaged, rather than altering their DNA sequence," said the first author of the study, graduate student Sito Torres-Garcia.

Fungal diseases don't only infect people, they also affect plants. As many as one-third of global crops are lost every year to fungal pathogens.

In this work, the researchers studied drug resistance in a type of yeast, a fungus called Schizosaccharomyces pombe. To mimic the effect of antifungal drugs, they exposed it to caffeine. The researchers found that the resistant yeast generated in this experiment had an altered epigenome. Some of the yeast genes had been inactivated because they were tightly packed in heterochromatin; these epigenetic changes made them resistant to the effects of caffeine.

The researchers said that caffeine causes two important changes in the fission yeast that arise. "Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed," they wrote.  The epimutation (through heterochromatin) allows the yeast to adapt to the noxious chemical in their environment without changing their genome.

Now that researchers know more about how drug resistance might be emerging or passed on to future generations by fungi, they may be able to improve agriculture or create better therapeutics, potentially by targeting heterochromatin.

"Our team is excited about the possible implications that these findings may have for understanding how plant, animal and human fungal pathogens develop resistance to the very limited number of available and effective antifungal drug treatments," said the study leader Professor Robin Allshire of the Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences.

Sources: AAAS/Eurekalert! via University of Edinburgh, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 18, 2020
Cell & Molecular Biology
Small RNA is Connected to Bacterial Pathogenicity
OCT 18, 2020
Small RNA is Connected to Bacterial Pathogenicity
It's thought that as much as half of the global population carries a bacterium called Helicobacter pylori in their stoma ...
NOV 06, 2020
Microbiology
Daily Aspirin Users Less Likely to Die From COVID-19
NOV 06, 2020
Daily Aspirin Users Less Likely to Die From COVID-19
Recent work has backed up research from earlier this year that suggested that aspirin might help prevent the worst cases ...
DEC 01, 2020
Microbiology
Low Vitamin D Levels are Linked to a Lack of Gut Microbiome Diversity
DEC 01, 2020
Low Vitamin D Levels are Linked to a Lack of Gut Microbiome Diversity
The link between the microbes we carry in our gastrointestinal tract and our health has become clear, and now researcher ...
DEC 05, 2020
Genetics & Genomics
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
DEC 05, 2020
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
We've all learned about super-spreader events over the past year, but occasions where a large group of people gathers an ...
JAN 08, 2021
Cell & Molecular Biology
How Viruses Keep the Infection Going
JAN 08, 2021
How Viruses Keep the Infection Going
There has long been debate about whether viruses are a form of life, because many of them are only made up of a bit of g ...
JAN 17, 2021
Microbiology
Gut Microbes May Play a Role in Anorexia
JAN 17, 2021
Gut Microbes May Play a Role in Anorexia
Eating disorders like anorexia nervosa and bulimia nervosa are illnesses that involve serious disturbances in eating beh ...
Loading Comments...