APR 12, 2016 2:09 PM PDT

"Auto-poisoning" boosts biofilm production

WRITTEN BY: Kerry Evans
Pseudomonas aeruginosa cells secrete a molecule that kills some bacteria but signals the survivors to form a biofilm.

P. aeruginosa is an opportunistic pathogen that often infects people with compromised immune systems. Infections are common in patients with cystic fibrosis, HIV, and cancer. Many of these infections are complicated by the fact the P. aeruginosa loves to form antibiotic-resistant biofilms. Fun fact, P. aeruginosa also infects plants (Arabidopsis thaliana) and invertebrates (C. elegans).
 
P. aeruginosa cells form biofilms.

In a study published in Current Biology, researchers at Rensselaer Polytechnic Institute report that P. aeruginosa produces a molecule called 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) that signals neighboring cells to start forming a biofilm. The odd thing is, HQNO also inhibits respiration in bacterial cells.

According to study author Blanca Barquera, “what we've found is a suicidal pathway in which the sacrifice of some leads to a benefit for the community … one of Pseudomonas's own molecules targets one of its own proteins, and while some die, the ones that survive are induced to make a biofilm. This research helps us to understand how Pseudomonas creates biofilms, and that could help us prevent biofilms that play a role in persistent and relapsing infections”.

HQNO inhibits respiration by disrupting the cytochrome bc1 complex. In this case, electrons are passed directly to O2, generating reactive oxygen species that kill the bacteria by disrupting their membranes. However, cells that are able to activate alternative respiratory pathways survive.

The researchers knew that this sort of cell death must serve some “greater purpose”. P. aeruginosa often uses extracellular DNA (eDNA) to build its biofilms. Since the cells that are killed by HQNO end up lysing and releasing DNA, they reasoned that this HQNO-mediated killing may promote biofilm formation.

To determine whether P. aeruginosa used eDNA from HQNO-lysed cells to make biofilms, they added DNase to cultures that actively produced HQNO. Sure enough, the DNase reduced the CFUs per biofilm by nearly two logs (not too shabby), indicating that the cells were using eDNA to build their biofilms.
 

Sources: Current Biology, Science Daily, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 20, 2019
Cell & Molecular Biology
NOV 20, 2019
Learning More About the Unknown Viruses in the Human Body
Some viruses, called bacteriophages, infect bacteria. A research team found many of these viruses in human samples....
DEC 15, 2019
Cell & Molecular Biology
DEC 15, 2019
Using a Bacterial Syringe to Deliver Proteins to Cells
Researchers want to use a pathogen's strategy for therapeutic purposes....
DEC 18, 2019
Clinical & Molecular DX
DEC 18, 2019
Germs don't stand a chance with new AI-powered diagnostic platform
We are steadily losing our edge in the war against infectious bacteria. A huge surge in antibiotic resistance is threatening healthcare and agricultural in...
JAN 13, 2020
Microbiology
JAN 13, 2020
Using Food to 'Sculpt' the Gut Microbiome
Scientists are learning more about how the antimicrobial effect of some foods and how it alters the microbial community in the gut....
FEB 04, 2020
Microbiology
FEB 04, 2020
Revealing How a Common Virus Evades the Immune System
The human metapneumovirus (HMPV) might now be well-known, but it is the second biggest cause of respiratory infections....
FEB 09, 2020
Microbiology
FEB 09, 2020
Investigating the Links Between Viruses and Cancer
The Pan-Cancer Analysis of Whole Genomes (PCAWG) has brought over 1,300 scientists together to gain new insights into the genetics of cancer....
Loading Comments...