APR 12, 2016 2:09 PM PDT

"Auto-poisoning" boosts biofilm production

WRITTEN BY: Kerry Evans
Pseudomonas aeruginosa cells secrete a molecule that kills some bacteria but signals the survivors to form a biofilm.

P. aeruginosa is an opportunistic pathogen that often infects people with compromised immune systems. Infections are common in patients with cystic fibrosis, HIV, and cancer. Many of these infections are complicated by the fact the P. aeruginosa loves to form antibiotic-resistant biofilms. Fun fact, P. aeruginosa also infects plants (Arabidopsis thaliana) and invertebrates (C. elegans).
 
P. aeruginosa cells form biofilms.

In a study published in Current Biology, researchers at Rensselaer Polytechnic Institute report that P. aeruginosa produces a molecule called 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) that signals neighboring cells to start forming a biofilm. The odd thing is, HQNO also inhibits respiration in bacterial cells.

According to study author Blanca Barquera, “what we've found is a suicidal pathway in which the sacrifice of some leads to a benefit for the community … one of Pseudomonas's own molecules targets one of its own proteins, and while some die, the ones that survive are induced to make a biofilm. This research helps us to understand how Pseudomonas creates biofilms, and that could help us prevent biofilms that play a role in persistent and relapsing infections”.

HQNO inhibits respiration by disrupting the cytochrome bc1 complex. In this case, electrons are passed directly to O2, generating reactive oxygen species that kill the bacteria by disrupting their membranes. However, cells that are able to activate alternative respiratory pathways survive.

The researchers knew that this sort of cell death must serve some “greater purpose”. P. aeruginosa often uses extracellular DNA (eDNA) to build its biofilms. Since the cells that are killed by HQNO end up lysing and releasing DNA, they reasoned that this HQNO-mediated killing may promote biofilm formation.

To determine whether P. aeruginosa used eDNA from HQNO-lysed cells to make biofilms, they added DNase to cultures that actively produced HQNO. Sure enough, the DNase reduced the CFUs per biofilm by nearly two logs (not too shabby), indicating that the cells were using eDNA to build their biofilms.
 

Sources: Current Biology, Science Daily, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of criti ...
MAR 29, 2020
Earth & The Environment
MAR 29, 2020
Incinerators and landfills breed antibiotic resistant genes
Here’s a compelling reason to start composting: your municipal solid waste is producing airborne antibiotic-resist ...
APR 21, 2020
Genetics & Genomics
APR 21, 2020
A 2020 Census for Microbes in Florida Springs
Water sources are vital to communities and wildlife alike, and it's important to monitor their health.
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
MAY 04, 2020
Neuroscience
MAY 04, 2020
Certain Gut Bacteria Improves Memory in Mice
Researchers from the US Department of Energy national laboratories have found that certain gut bacteria are able to impr ...
JUN 01, 2020
Microbiology
JUN 01, 2020
The Most Common Marine Microbe Has a Virus in Its Genome
Single-celled ocean microbes known as Pelagibacter or SAR11 make up about 25 percent of the plankton on the planet.
Loading Comments...