APR 24, 2016 7:01 AM PDT

These tiny protein ‘power lines' are made by microbes

Very small fibers made by a bacteria have the unique property of transporting charges at speeds of 1 billion electrons per second.
 
"They are like power lines at the nanoscale," says Gemma Reguera about the protein fibers, which are about 2 nanometers in diameter.

The fibers are hair-like protein filaments called pili.

“This microbial nanowire is made of but a single peptide subunit,” says Gemma Reguera, lead author and Michigan State University microbiologist. “Being made of protein, these organic nanowires are biodegradable and biocompatible. This discovery thus opens many applications in nanoelectronics such as the development of medical sensors and electronic devices that can be interfaced with human tissues.”

Since existing nanotechnologies incorporate exotic metals into their designs, the cost of organic nanowires is much more cost effective as well, she says.

Moving electrons
How the nanowires function in nature is comparable to breathing. Bacterial cells, like humans, have to breathe. The process of respiration involves moving electrons out of an organism.

Geobacterbacteria use the protein nanowires to bind and breathe metal-containing minerals such as iron oxides and soluble toxic metals such as uranium. The toxins are mineralized on the nanowires’ surface, preventing the metals from permeating the cell.

Reguera’s team purified their protein fibers, which are about 2 nanometers in diameter. Using the same toolset of nanotechnologists, the scientists were able to measure the high velocities at which the proteins were passing electrons. The work is featured in Scientific Reports.

“They are like power lines at the nanoscale,” Reguera says. “This also is the first study to show the ability of electrons to travel such long distances—more than a 1,000 times what’s been previously proven—along proteins.”

The researchers also identified metal traps on the surface of the protein nanowires that bind uranium with great affinity and could potentially trap other metals. These findings could provide the basis for systems that integrate protein nanowires to mine gold and other precious metals, scrubbers that can be deployed to immobilize uranium at remediation sites and more.

‘The bacteria invented this’
Reguera’s nanowires also can be modified to seek out other materials in which to help them breathe.
“The Geobacter cells are making these protein fibers naturally to breathe certain metals. We can use genetic engineering to tune the electronic and biochemical properties of the nanowires and enable new functionalities.

“We also can mimic the natural manufacturing process in the lab to mass-produce them in inexpensive and environmentally friendly processes,” Reguera says. “This contrasts dramatically with the manufacturing of manmade inorganic nanowires, which involve high temperatures, toxic solvents, vacuums, and specialized equipment.”

This discovery came from truly listening to bacteria, Reguera adds.

“The protein is getting the credit, but we can’t forget to thank the bacteria that invented this,” she says. “It’s always wise to go back and ask bacteria what else they can teach us. In a way, we are eavesdropping on microbial conversations. It’s like listening to our elders, learning from their wisdom and taking it further.”

Michigan State University and the National Science Foundation funded the study.

Source: Michigan State University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
DEC 01, 2019
Microbiology
DEC 01, 2019
Some Antacids Appear to Increase the Risk of Gastroenteritis
Proton pump inhibitors (PPIs) are drugs for heartburn relief; they can reduce stomach acid levels....
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 15, 2019
Microbiology
DEC 15, 2019
Neurons in the Gut Can Detect Salmonella & Protect Against Infection
Nerve cells act as critical sensors for the human body, and now scientists have found that they have another role in the small intestine....
JAN 22, 2020
Microbiology
JAN 22, 2020
Tuberculosis Pathogen Can Survive in Soil Amoebae
Researchers have learned that the bacterium that causes bovine tuberculosis is able to survive and grow inside of amoeba that live in soil....
FEB 19, 2020
Immunology
FEB 19, 2020
Rainbow trout hold the key to unravelling immunological mysteries
What do the gut microbiome, antibodies, and rainbow trout have in common? A lot, says researcher J. Oriol Sunyer from the University of Pennsylvania’...
FEB 23, 2020
Cell & Molecular Biology
FEB 23, 2020
A New Class of Bacterial Enzymes is Discovered
Bacterial enzymes can serve many processes, from breaking down pollutants and digesting foods to metabolizing drugs....
Loading Comments...