APR 24, 2016 07:01 AM PDT

These tiny protein ‘power lines' are made by microbes

Very small fibers made by a bacteria have the unique property of transporting charges at speeds of 1 billion electrons per second.
 
"They are like power lines at the nanoscale," says Gemma Reguera about the protein fibers, which are about 2 nanometers in diameter.

The fibers are hair-like protein filaments called pili.

“This microbial nanowire is made of but a single peptide subunit,” says Gemma Reguera, lead author and Michigan State University microbiologist. “Being made of protein, these organic nanowires are biodegradable and biocompatible. This discovery thus opens many applications in nanoelectronics such as the development of medical sensors and electronic devices that can be interfaced with human tissues.”

Since existing nanotechnologies incorporate exotic metals into their designs, the cost of organic nanowires is much more cost effective as well, she says.

Moving electrons
How the nanowires function in nature is comparable to breathing. Bacterial cells, like humans, have to breathe. The process of respiration involves moving electrons out of an organism.

Geobacterbacteria use the protein nanowires to bind and breathe metal-containing minerals such as iron oxides and soluble toxic metals such as uranium. The toxins are mineralized on the nanowires’ surface, preventing the metals from permeating the cell.

Reguera’s team purified their protein fibers, which are about 2 nanometers in diameter. Using the same toolset of nanotechnologists, the scientists were able to measure the high velocities at which the proteins were passing electrons. The work is featured in Scientific Reports.

“They are like power lines at the nanoscale,” Reguera says. “This also is the first study to show the ability of electrons to travel such long distances—more than a 1,000 times what’s been previously proven—along proteins.”

The researchers also identified metal traps on the surface of the protein nanowires that bind uranium with great affinity and could potentially trap other metals. These findings could provide the basis for systems that integrate protein nanowires to mine gold and other precious metals, scrubbers that can be deployed to immobilize uranium at remediation sites and more.

‘The bacteria invented this’
Reguera’s nanowires also can be modified to seek out other materials in which to help them breathe.
“The Geobacter cells are making these protein fibers naturally to breathe certain metals. We can use genetic engineering to tune the electronic and biochemical properties of the nanowires and enable new functionalities.

“We also can mimic the natural manufacturing process in the lab to mass-produce them in inexpensive and environmentally friendly processes,” Reguera says. “This contrasts dramatically with the manufacturing of manmade inorganic nanowires, which involve high temperatures, toxic solvents, vacuums, and specialized equipment.”

This discovery came from truly listening to bacteria, Reguera adds.

“The protein is getting the credit, but we can’t forget to thank the bacteria that invented this,” she says. “It’s always wise to go back and ask bacteria what else they can teach us. In a way, we are eavesdropping on microbial conversations. It’s like listening to our elders, learning from their wisdom and taking it further.”

Michigan State University and the National Science Foundation funded the study.

Source: Michigan State University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
OCT 18, 2019
Microbiology
OCT 18, 2019
Large Study Shows That Birth Mode Impacts Infant Microbiome
The microbiome is impacted by mode of birth - babies born by Cesarean section have a different microbiome than babies born vaginally....
OCT 18, 2019
Immunology
OCT 18, 2019
Flu Shot Less Effective Due to Overuse of Antibioitics
New research out of the Stanford University School of Medicine shows that the consequence of overuse of antibiotics lowers the effectiveness of the seasona...
OCT 18, 2019
Microbiology
OCT 18, 2019
Rethinking the Way Viruses Are Classified
Scientists may have to start reclassifying viruses, according to new work that shows they can take on more forms than we thought....
OCT 18, 2019
Health & Medicine
OCT 18, 2019
Effectiveness of Different Hand-Drying Methods on Reducing Bacteria on Washed Hands
Hand hygiene is vital to prevent the spread of infectious organisms, especially in healthcare settings. It is well-documented in the literature about the i...
OCT 18, 2019
Microbiology
OCT 18, 2019
A Bacterial Pathogen Can Steal Huge Chunks of DNA From Other Microbes
Microorganisms are everywhere, and they are often engaged in a fight for resources with other microbes....
OCT 18, 2019
Microbiology
OCT 18, 2019
The Antimicrobial Power of Mucus is Revealed
We produce several liters of mucus every day to cover more than 200 square meters in the human body....
Loading Comments...