MAY 11, 2016 2:07 PM PDT

Pathogen-specific antibiotics protect gut bacteria

WRITTEN BY: Kerry Evans
You take antibiotics for an infection, right? Broad-spectrum antibiotics kill the harmful bacteria, yes. The problem is that they also kill your beneficial gut microbes - those guys that help you digest food and provide vitamins.

Researchers at St. Jude Children’s Research Hospital demonstrated that a Staphylococcus aureus-specific antibiotic called Debio 1452 (produced by Debiopharm International) effectively spared much of the gut microbiome when given orally to mice.
 
Broad-spectrum antibiotics damage the microbiome.

According to study author Charles Rock, “in this study, we demonstrated that the pathogen-selective approach to antibiotic development is an effective way to minimize collateral damage to beneficial bacteria in the gut microbiome. Such treatment strategies will become increasingly important for use in antibiotic drug design thanks to the growing awareness of the vital role that the gut microbiome plays in digestion and immune protection.”

The antibiotic works by blocking the activity of an enzyme called FabI. Staph needs this enzyme to grow, but most other bacteria do not.

The group compared the effect of Debio 1452 and broad-spectrum antibiotics (linezolid, clindamycin, amoxicillin, of moxifloxacin) on the gut bacteria of mice. They used next-generation sequencing techniques to identify and quantify bacteria from stool samples.

The broad-spectrum antibiotics decreased the abundance of gut microbes up to 4,000 fold! (That’s a lot.) Debio 1452, on the other hand, had little effect. What’s more, the concentration of Debio in mice was 12 times higher than what would be given to humans!

Broad-spectrum antibiotics also decreased the diversity of gut bacteria, but Debio 1452 altered diversity very little. Interestingly, the quantity of bacteria depleted with the broad-spectrum antibiotics returned to normal within a week, but diversity remained skewed.

This pathogen-specific approach does have an obvious drawback, however. It requires researchers to identify factors - enzymes, for example - that are essential to each pathogen and design a drug to specifically target that weakness.

Sources: Antimicrobial Agents and Chemotherapy, Alpha Galileo
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 19, 2020
Cell & Molecular Biology
Mild COVID-19 Cases Induce an Immune Cell Response
AUG 19, 2020
Mild COVID-19 Cases Induce an Immune Cell Response
As the pandemic virus, SARS-CoV-2 continues to cause tens of thousands of new cases of COVID-19 every day in the United ...
SEP 30, 2020
Microbiology
Bringing Attention to a Neglected Disease
SEP 30, 2020
Bringing Attention to a Neglected Disease
Schistosomiasis doesn't get much research attention, but it affects around 240 million people around the world, killing ...
OCT 01, 2020
Microbiology
Investigating the Origins of a Cholera Epidemic
OCT 01, 2020
Investigating the Origins of a Cholera Epidemic
Cholera is an intestinal infection caused by Vibrio cholerae. Cholera has been a scourge throughout human history, and i ...
OCT 05, 2020
Microbiology
Deadly Microbe Linked to Childhood Brain Disorder
OCT 05, 2020
Deadly Microbe Linked to Childhood Brain Disorder
Pediatric hydrocephalus - excessive fluid on the brain of a child - has been connected to a bacterial pathogen.
OCT 21, 2020
Microbiology
The First Treatment for Ebola is Approved by FDA
OCT 21, 2020
The First Treatment for Ebola is Approved by FDA
Ebola virus can pass from animals to humans, and between people. Rarely, it causes outbreaks but when it does, they can ...
NOV 04, 2020
Coronavirus
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
NOV 04, 2020
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
COVID-19, the illness caused by the pandemic virus SARS-CoV-2, is known to cause blood clots all over the body in some p ...
Loading Comments...