MAY 17, 2016 1:21 PM PDT

Staph curbs virulence to enter bloodstream

WRITTEN BY: Kerry Evans
Small genetic changes in Staphylococcus aureus affect how and where these bacteria infect people.

Staph is a normal part of your microbiome - about 29% of the US population carries Staph on their skin or in their noses. (Are you part of the 29%?!) If these cells find their way into your bloodstream, however, you can end up with a life-threatening infection.
 
Staph become less virulent to enter the bloodstream.

Here are some scary Staph statistics. Around 90,000 people are infected with MRSA (methicillin-resistant S. aureus) in the US each year, and nearly 50% of people report recurring MRSA infections. In England, there was a 548% increase in MRSA-related deaths between 2003 and 2004. Last, but not least, almost 20% of bloodstream infections are caused by Staph.

According to University of Wurzburg investigator Thomas Rudel, “recent studies have shown that in some cases Staphylococcus strains in the blood of patients differ substantially from those found in the nose … that is astonishing, as both types of bacteria often are very closely related in genetic terms”.

Rudel and colleagues found that one specific mutation, the loss of function of a gene called “repressor of surface proteins” (rsp), allowed Staph to move from the nose into the bloodstream - where it could cause severe infection. What’s strange is that this mutation actually makes Staph less virulent. Essentially, the toxic strains of Staph that live in your nose acquire an rsp mutation, making them less toxic, but better able to enter the bloodstream.

So, how does this all work? The group found that rsp expression helps Staph kill immune cells - by producing toxins in response to hydrogen peroxide (which is produced by neutrophils), for example. When they infected mice with an rsp mutant, the bacteria produced fewer toxins, but were still able cause abscesses. The mutant bacteria were also able to survive in human blood - they weren’t killed by immune cells. This is probably because the rsp mutation allowed the bacteria to survive inside host cells for an extended period of time, but the mechanisms behind this are not clear.    
 
 

Sources: PNAS, EurekAlert, Health Research Funding
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 01, 2021
Microbiology
Mapping the Wild Microbiome to Search for Therapeutic Agents
APR 01, 2021
Mapping the Wild Microbiome to Search for Therapeutic Agents
Many people think of bacteria as disgusting germs, but there are plenty of important bacterial species that provide us w ...
APR 06, 2021
Microbiology
A Bacterial Protein That Causes Nausea
APR 06, 2021
A Bacterial Protein That Causes Nausea
The bacterium Campylobacter is thought to cause more cases of food poisoning than any other microbial pathogen. Scientis ...
APR 16, 2021
Coronavirus
Stressing the Importance of Acknowledging Airborne COVID-19 Transmission
APR 16, 2021
Stressing the Importance of Acknowledging Airborne COVID-19 Transmission
For months, officials have been debating whether the pandemic virus that causes COVID-19, SARS-CoV-2, is airborne. Resea ...
MAY 06, 2021
Genetics & Genomics
There's More to Viral DNA Than ATGC
MAY 06, 2021
There's More to Viral DNA Than ATGC
Plants and animals have genomes made of four nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine (G). ...
MAY 17, 2021
Microbiology
Bacteria Can Time Their DNA Replications by the Circadian Clock
MAY 17, 2021
Bacteria Can Time Their DNA Replications by the Circadian Clock
The circadian rhythm is the body's clock, and it influences physiology at the cellular level; it can help animals, inclu ...
JUN 13, 2021
Microbiology
Bacteria May Influence Fear in Babies
JUN 13, 2021
Bacteria May Influence Fear in Babies
The microbes that call the human gastrointestinal tract home are with us since birth (or even earlier) and seem to have ...
Loading Comments...