MAY 17, 2016 1:21 PM PDT

Staph curbs virulence to enter bloodstream

WRITTEN BY: Kerry Evans
Small genetic changes in Staphylococcus aureus affect how and where these bacteria infect people.

Staph is a normal part of your microbiome - about 29% of the US population carries Staph on their skin or in their noses. (Are you part of the 29%?!) If these cells find their way into your bloodstream, however, you can end up with a life-threatening infection.
 
Staph become less virulent to enter the bloodstream.

Here are some scary Staph statistics. Around 90,000 people are infected with MRSA (methicillin-resistant S. aureus) in the US each year, and nearly 50% of people report recurring MRSA infections. In England, there was a 548% increase in MRSA-related deaths between 2003 and 2004. Last, but not least, almost 20% of bloodstream infections are caused by Staph.

According to University of Wurzburg investigator Thomas Rudel, “recent studies have shown that in some cases Staphylococcus strains in the blood of patients differ substantially from those found in the nose … that is astonishing, as both types of bacteria often are very closely related in genetic terms”.

Rudel and colleagues found that one specific mutation, the loss of function of a gene called “repressor of surface proteins” (rsp), allowed Staph to move from the nose into the bloodstream - where it could cause severe infection. What’s strange is that this mutation actually makes Staph less virulent. Essentially, the toxic strains of Staph that live in your nose acquire an rsp mutation, making them less toxic, but better able to enter the bloodstream.

So, how does this all work? The group found that rsp expression helps Staph kill immune cells - by producing toxins in response to hydrogen peroxide (which is produced by neutrophils), for example. When they infected mice with an rsp mutant, the bacteria produced fewer toxins, but were still able cause abscesses. The mutant bacteria were also able to survive in human blood - they weren’t killed by immune cells. This is probably because the rsp mutation allowed the bacteria to survive inside host cells for an extended period of time, but the mechanisms behind this are not clear.    
 
 

Sources: PNAS, EurekAlert, Health Research Funding
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 22, 2020
Cardiology
New Study Shows Red Meat May Not be Linked to Heart Disease
APR 22, 2020
New Study Shows Red Meat May Not be Linked to Heart Disease
According to the Center for Disease Control (CDC), “heart disease is the leading cause of death for men, women, an ...
APR 26, 2020
Cell & Molecular Biology
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
MAY 01, 2020
Microbiology
Once Thought to Make COVID-19 Worse, ACE Inhibitors Now Tested as Therapeutic
MAY 01, 2020
Once Thought to Make COVID-19 Worse, ACE Inhibitors Now Tested as Therapeutic
Researchers were once concerned that blood pressure medications may increase the risk of infection, or make an infection ...
MAY 07, 2020
Clinical & Molecular DX
An 8 Minute DNA Test For Salmonella
MAY 07, 2020
An 8 Minute DNA Test For Salmonella
Australian researchers have created a sensitive, super-fast test for five different serotypes of Salmonella which could ...
MAY 31, 2020
Microbiology
Zika Virus Infections in Early Life Can Cause Brain Damage
MAY 31, 2020
Zika Virus Infections in Early Life Can Cause Brain Damage
The Zika virus, which is transmitted by Aedes mosquitoes, poses significant risks to the developing fetus, and new work ...
JUN 10, 2020
Drug Discovery & Development
Does Your Gut Microbiota Alter Drug Activity?
JUN 10, 2020
Does Your Gut Microbiota Alter Drug Activity?
Scientists have created a systematic way to evaluate how the microbial community in our gut influences drug behavior. Fi ...
Loading Comments...