MAY 21, 2016 03:37 PM PDT

Modeling the Microbiome

WRITTEN BY: Kerry Evans
Microbiome this, microbiome that. Nothing is more popular than the gut microbiome - and for good reason. Nearly every day there’s a new story describing how the gut microbiome impacts our overall health - it keeps our immune systems healthy and sends important signals to our brains.

The gut is a complex environment. Our intestines house a slurry of bacteria, host cells, and food particles. (Remember that burrito you ate last night?) This complexity makes it particularly hard to study in the lab - it’s tough to recreate the exact conditions that favor the growth of various populations of bacteria, for example. Of course, that hasn’t stopped researchers from trying.
 
Researchers use the "TIM" to simulate the gut environment.

The simplest way to study communities of gut bacteria is with short-term batch incubation - but it suffers from a number of shortcomings. Batch incubation is exactly what it sounds like, take some gut or fecal bacteria and plop it into a test tube. The problem is that waste products build up quickly, making this model less than life-like.

A second way to model the gut environment is to use a multi-compartmental continuous system. There are various types, but I’ll touch on the most interesting.

One of the earliest multi-compartmental systems is the MacFarlane/Gibson system. Here, three vessels are connected to one another. One vessel simulates the ascending colon (pH 6.0), the second vessel simulates the transverse colon (pH 6.5), and the third simulates the distal colon (pH 7.0). This system uses a growth medium that contains a “resistant starch” that can only be broken down by bacteria, making this model a bit more realistic.

A second multi-compartmental system is the SHIME (chosen because I like the name). SHIME stands for Simulator of the Human Intestinal Microbial Ecosystem. This system builds off of the MacFarlane/Gibson model, incorporating two additional culture vessels that simulate the upper digestive tract.

Last, but not least, is the TIM-2 (this acronym has a surprisingly boring definition, so I’ll spare you). This one jumped out at me because the reaction vessels are lined with a flexible silicone membrane that simulates the peristaltic movement of the gut (pictured above). It also uses dialysis membranes to filter out microbial waste products (just like the real thing!).

The bottom line is there’s no perfect system (yet). The newest model to hit the market is the HuMiX. Preliminary studies are promising, but only time will tell how this system will stand up against its predecessors.

Sources: Clinical Gastroenterology, Science Daily
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 24, 2018
Microbiology
JUL 24, 2018
Salmonella Outbreak Linked to Raw Turkey Products
Researchers at the CDC are trying to learn more about a rash of Salmonella infections....
JUL 29, 2018
Microbiology
JUL 29, 2018
Revealing why Sepsis Causes Organs to Fail
The Staphylococcus aureus bacterium can cause devastating illnesses - called staph infections - and lead to organ failure....
AUG 31, 2018
Microbiology
AUG 31, 2018
An Ebola Outbreak in the Democratic Republic of Congo
In August, the World Health Organization declared that an Ebola outbreak was happening in the DRC....
SEP 04, 2018
Drug Discovery
SEP 04, 2018
'Fosfomycin' Antibiotic Treatment to Combat Listeria Infections
Antibiotic-resistant bacteria that were long thought to be untreatable may now be treated with a powerful antibiotic according to a recent study published ...
SEP 06, 2018
Microbiology
SEP 06, 2018
The Oncomicrobiome - Linking Microbes and Cancer
Scientists want to know more about how the microbes we carry in and on us are related to cancer development....
SEP 22, 2018
Videos
SEP 22, 2018
Did a Vampire Facial Expose Patients to Bloodborne Disease?
It seems there is no shortage of unusual beauty rituals; vampire facials may fall into that category....
Loading Comments...