MAY 26, 2016 5:34 AM PDT

Bacteria's Sporulation Trigger Discovered

WRITTEN BY: Carmen Leitch
Scientists have long searched for the answer to the question of how bacteria decide to cease normal function and form a spore, which in essence means death for the microbe. Bioengineering researchers and colleagues at Rice University have shed new light on the mechanism used by bacteria to make that decision. Revealing the method used could have implications for food preservation and the control of food-borne illness.
A mixed population of starving Bacillus subtilis cells includes nonsporulating cells (blue) and cells beginning spore formation by dividing asymmetrically into small (pink) and large (yellow) chambers.
"Is there a specific biochemical trigger that activates one of the network proteins or is sporulation more of a general physiological response,” said study co-author Oleg Igoshin, an associate professor of bioengineering and a senior investigator at Rice's Center for Theoretical Biological Physics (CTBP). "It's a high-stakes decision, which suggests that the decision mechanism has come about through intense evolutionary pressure," Igoshin continued. "It's also possible that organisms have adopted this same mechanism to make other critical decisions."

Hard-shelled spores can survive for years without food so in forming one, an organism must devote all of its energy into sporulation. The timing must be perfect. If a microbe commits to become a spore too soon it may die from competition with healthy neighbors that continue multiplying. Delaying the decision too long could cause death by starvation before the spore formation is complete.

The new study, published in Molecular Systems Biology, builds upon their previous work. Igoshin and collaborators made a computer model to show that a decline of cellular growth can trigger sporulation decisions in B. subtilis.
The network that controls sporulation in Bacillus subtilis senses the slowdown of cellular growth during starvation. Sensing growth rate changes allows indirect detection of starvation without a nutrient?sensing mechanism.
During starvation, when the growth rate of a cell slows down, the concentration of a key protein - Spo0A - increases, and the bacteria are likelier to form spores. The computational work done at Rice was then tested and confirmed experimentally in the lab of co-author Gürol Süel, associate professor of molecular biology at the University of California at San Diego.

B. subtilis excels at surviving and is commonly found in soil. It’s not harmful to people, even being used as a probiotic in some foods. It’s also the model organism of choice for biologists who study sporulation.

 “Sporulation by some of the close relatives of B. subtilis is a big hassle for the food-preservation industry because many of those spores can survive boiling temperatures,” Igoshin said. “To kill those spores, you need to apply both heat and high pressure. So people have been looking for other methods to inhibit sporulation. If sporulation was triggered by a specific molecule, then perhaps a drug could be found to block that molecule, but our research suggests that sporulation is a general physiological response and that food safety engineers will need to look for other methods of control.

“Moreover, there is a good chance that this mechanism controls key decisions in other bacterial species,” he said. “It ties to very basic bacterial physiology, and as a result, I think it may be universal.”

Igoshin started studying the genes that regulate sporulation in B. subtilis a decade ago. You can see more about their work in the video.
        

Sources: Rice University News & Media, Molecular Systems Biology
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 24, 2020
Neuroscience
Prenatal Stress May Influence Infant Gut Bacteria
JUN 24, 2020
Prenatal Stress May Influence Infant Gut Bacteria
Although prenatal stress has previously been associated with infant growth and development, exactly how they are linked ...
JUN 24, 2020
Microbiology
Genetic Variations Can Affect the Gut Microbiome
JUN 24, 2020
Genetic Variations Can Affect the Gut Microbiome
The small variations in the human genome aren't the only thing that make us unique. We also each carry communities of mi ...
JUN 29, 2020
Genetics & Genomics
Why Two Similar Bacterial Toxins Cause Different Illnesses
JUN 29, 2020
Why Two Similar Bacterial Toxins Cause Different Illnesses
The microbial pathogens of the world have shown us how powerful they can be, most recently proven by the current pandemi ...
JUN 30, 2020
Microbiology
Researchers Find a Flu They Say Has the Potential to Cause a Pandemic
JUN 30, 2020
Researchers Find a Flu They Say Has the Potential to Cause a Pandemic
The world's attention is on a virus right now - the pandemic coronavirus that causes COVID-19. But researchers are still ...
AUG 11, 2020
Microbiology
A New Microbe is Discovered in an 'Unnatural' Environment
AUG 11, 2020
A New Microbe is Discovered in an 'Unnatural' Environment
While we can exert a degree of control over our surroundings, we still share the world and our bodies with microbes.
AUG 18, 2020
Microbiology
Syphilis was Spreading in Europe Before Columbus' Time
AUG 18, 2020
Syphilis was Spreading in Europe Before Columbus' Time
Syphilis is a sexually transmitted disease caused by a bacterium: Treponema pallidum subspecies pallidum. Its origins ha ...
Loading Comments...