JUL 15, 2016 10:39 AM PDT

Anti-aging secrets of bacteria

WRITTEN BY: Kerry Evans
It’s common knowledge that bacteria replicate by making exact copies of themselves, right? Well, that’s true, most of the time.

Researchers from the Niels Bohr Institute at the University of Copenhagen, led by Ala Trusina, found that, when stressed, bacteria partition more of their genetic defects into one daughter cell than the other.
Trusina illustrates the process of asymmetrical division.

Since all organisms accumulate genetic defects as they age (humans included), Trusina reasoned that a colony of bacteria must have some way to minimize passing on these defects in order to keep the population healthy. “We wanted to investigate whether the bacteria divided symmetrically with an equal number of defects in both new individuals or whether they divided asymmetrically with more defects in one new bacteria than the other”, says Trusina.

In other words, are genetic defects spread evenly throughout the population, or are they effectively partitioned into a subset of the population?

What they found was that, when E. coli bacteria were not stressed (they had plenty of food, the temperature was perfect, etc.), mutations were divided symmetrically between daughter cells. That is, genetic defects that accumulated over time were spread equally throughout the population.

On the other hand, if the researchers stressed the bacteria by increasing the temperature or adding antibiotics, mutations were passed on asymmetrically to the daughter cells. The result was that only a subpopulation of bacteria “aged”; these cells also grew more slowly than their “younger” relatives. This way, the colony contained a subpopulation of healthy, super bacteria that could cope with environmental stresses.

Other data from Trusina and colleagues indicate that this aging process is controlled primarily by the environment. “What we have found is that the asymmetry of cell division is not controlled genetically. It is a process that is controlled by the physical environment. Through collective behaviour, the bacterial colony that is exposed to stress can stay young, produce more offspring, and keep the colony healthier. This is completely new knowledge that has never been observed before”, says Trusina.

This type of genetic segregation falls under the umbrella of “asymmetric damage segregation” (ADS). Trusina describes it as “a mechanism for increasing population fitness through non-random, asymmetric partitioning of damaged macromolecules at cell division”. This phenomenon was already reported for protein aggregates in E. coli - a protein called IbpA aggregates old, damaged proteins at the cell poles. These aggregates become more prominent as cells age.

In fact, ADS may play an important role in diseases such as Alzheimer’s and Parkinson’s - conditions characterized by the accumulation of protein aggregates.

Source: University of Copenhagen, Cell Systems, PNAS
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 18, 2020
Drug Discovery & Development
Researchers Discover Mechanism to Prevent Antibiotic Resistance
AUG 18, 2020
Researchers Discover Mechanism to Prevent Antibiotic Resistance
Researchers from the Monash Biomedicine Discovery Institute have discovered a method used by bacteria to develop antibio ...
AUG 24, 2020
Microbiology
Microbes That Live on Air Alone Found Outside of Antarctica
AUG 24, 2020
Microbes That Live on Air Alone Found Outside of Antarctica
In 2017, researchers reported that they had identified microbes in Antarctica that could basically survive on only air. ...
OCT 01, 2020
Microbiology
Investigating the Origins of a Cholera Epidemic
OCT 01, 2020
Investigating the Origins of a Cholera Epidemic
Cholera is an intestinal infection caused by Vibrio cholerae. Cholera has been a scourge throughout human history, and i ...
OCT 13, 2020
Microbiology
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
OCT 13, 2020
Bacterial Biofilms Can Take on Some Animal-Like Characteristics
Bacteria are everywhere, even inside of our bodies, and they are thought to date back to the early days of life on Earth ...
NOV 19, 2020
Immunology
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
NOV 19, 2020
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
Parasitic worms known as helminths have a complicated relationship with the immune systems of the hosts they invade. Ter ...
NOV 25, 2020
Immunology
The History of Vaccines
NOV 25, 2020
The History of Vaccines
Everyone worldwide is sitting with anticipation, waiting for the right vaccine candidate for the coronavirus outbreak, h ...
Loading Comments...