JUL 15, 2016 10:39 AM PDT

Anti-aging secrets of bacteria

WRITTEN BY: Kerry Evans
It’s common knowledge that bacteria replicate by making exact copies of themselves, right? Well, that’s true, most of the time.

Researchers from the Niels Bohr Institute at the University of Copenhagen, led by Ala Trusina, found that, when stressed, bacteria partition more of their genetic defects into one daughter cell than the other.
Trusina illustrates the process of asymmetrical division.

Since all organisms accumulate genetic defects as they age (humans included), Trusina reasoned that a colony of bacteria must have some way to minimize passing on these defects in order to keep the population healthy. “We wanted to investigate whether the bacteria divided symmetrically with an equal number of defects in both new individuals or whether they divided asymmetrically with more defects in one new bacteria than the other”, says Trusina.

In other words, are genetic defects spread evenly throughout the population, or are they effectively partitioned into a subset of the population?

What they found was that, when E. coli bacteria were not stressed (they had plenty of food, the temperature was perfect, etc.), mutations were divided symmetrically between daughter cells. That is, genetic defects that accumulated over time were spread equally throughout the population.

On the other hand, if the researchers stressed the bacteria by increasing the temperature or adding antibiotics, mutations were passed on asymmetrically to the daughter cells. The result was that only a subpopulation of bacteria “aged”; these cells also grew more slowly than their “younger” relatives. This way, the colony contained a subpopulation of healthy, super bacteria that could cope with environmental stresses.

Other data from Trusina and colleagues indicate that this aging process is controlled primarily by the environment. “What we have found is that the asymmetry of cell division is not controlled genetically. It is a process that is controlled by the physical environment. Through collective behaviour, the bacterial colony that is exposed to stress can stay young, produce more offspring, and keep the colony healthier. This is completely new knowledge that has never been observed before”, says Trusina.

This type of genetic segregation falls under the umbrella of “asymmetric damage segregation” (ADS). Trusina describes it as “a mechanism for increasing population fitness through non-random, asymmetric partitioning of damaged macromolecules at cell division”. This phenomenon was already reported for protein aggregates in E. coli - a protein called IbpA aggregates old, damaged proteins at the cell poles. These aggregates become more prominent as cells age.

In fact, ADS may play an important role in diseases such as Alzheimer’s and Parkinson’s - conditions characterized by the accumulation of protein aggregates.

Source: University of Copenhagen, Cell Systems, PNAS
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 05, 2020
Cell & Molecular Biology
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
MAY 05, 2020
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
Samples obtained from patients from all over the world have been used to sequence the genomes of the viral strains infec ...
MAY 06, 2020
Cell & Molecular Biology
SARS-CoV-2 Can Infect Intestinal Cells
MAY 06, 2020
SARS-CoV-2 Can Infect Intestinal Cells
Once thought to cause symptoms that primarily affect the respiratory system, there has been evidence that the virus can ...
JUN 15, 2020
Microbiology
Research Shows Wearing a Face Mask Reduces the Risk of COVID-19 Infection
JUN 15, 2020
Research Shows Wearing a Face Mask Reduces the Risk of COVID-19 Infection
We've known that face masks can reduce the likelihood that asymptomatic people will spread the illness. But they are als ...
JUN 24, 2020
Neuroscience
Prenatal Stress May Influence Infant Gut Bacteria
JUN 24, 2020
Prenatal Stress May Influence Infant Gut Bacteria
Although prenatal stress has previously been associated with infant growth and development, exactly how they are linked ...
JUN 29, 2020
Microbiology
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
JUN 29, 2020
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
Vaccines that contain live attenuated viruses may be giving people some protection from serious cases of COVID-19 that i ...
JUL 20, 2020
Cell & Molecular Biology
A Pathogen Triggers Blood Vessel Formation That Causes Lesions
JUL 20, 2020
A Pathogen Triggers Blood Vessel Formation That Causes Lesions
The diseases cat scratch fever and trench fever are both caused by Bartonella bacteria. Animals can transmit these patho ...
Loading Comments...