JUL 15, 2016 10:39 AM PDT

Anti-aging secrets of bacteria

WRITTEN BY: Kerry Evans
It’s common knowledge that bacteria replicate by making exact copies of themselves, right? Well, that’s true, most of the time.

Researchers from the Niels Bohr Institute at the University of Copenhagen, led by Ala Trusina, found that, when stressed, bacteria partition more of their genetic defects into one daughter cell than the other.
Trusina illustrates the process of asymmetrical division.

Since all organisms accumulate genetic defects as they age (humans included), Trusina reasoned that a colony of bacteria must have some way to minimize passing on these defects in order to keep the population healthy. “We wanted to investigate whether the bacteria divided symmetrically with an equal number of defects in both new individuals or whether they divided asymmetrically with more defects in one new bacteria than the other”, says Trusina.

In other words, are genetic defects spread evenly throughout the population, or are they effectively partitioned into a subset of the population?

What they found was that, when E. coli bacteria were not stressed (they had plenty of food, the temperature was perfect, etc.), mutations were divided symmetrically between daughter cells. That is, genetic defects that accumulated over time were spread equally throughout the population.

On the other hand, if the researchers stressed the bacteria by increasing the temperature or adding antibiotics, mutations were passed on asymmetrically to the daughter cells. The result was that only a subpopulation of bacteria “aged”; these cells also grew more slowly than their “younger” relatives. This way, the colony contained a subpopulation of healthy, super bacteria that could cope with environmental stresses.

Other data from Trusina and colleagues indicate that this aging process is controlled primarily by the environment. “What we have found is that the asymmetry of cell division is not controlled genetically. It is a process that is controlled by the physical environment. Through collective behaviour, the bacterial colony that is exposed to stress can stay young, produce more offspring, and keep the colony healthier. This is completely new knowledge that has never been observed before”, says Trusina.

This type of genetic segregation falls under the umbrella of “asymmetric damage segregation” (ADS). Trusina describes it as “a mechanism for increasing population fitness through non-random, asymmetric partitioning of damaged macromolecules at cell division”. This phenomenon was already reported for protein aggregates in E. coli - a protein called IbpA aggregates old, damaged proteins at the cell poles. These aggregates become more prominent as cells age.

In fact, ADS may play an important role in diseases such as Alzheimer’s and Parkinson’s - conditions characterized by the accumulation of protein aggregates.

Source: University of Copenhagen, Cell Systems, PNAS
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
DEC 02, 2019
Microbiology
DEC 02, 2019
Understanding How a Superbug Spreads in the Home
Superbugs, which are pathogens that are resistant to the effects of antibiotics, are a rising threat to human health....
DEC 17, 2019
Cannabis Sciences
DEC 17, 2019
Overhauling the Endocannabinoid System with High-fat, High-sugar Diet
If both the endocannabinoid system and the intestinal microbiome are affected by dietary consumption habits, wouldn’t it be reasonable to suggest tha...
JAN 01, 2020
Microbiology
JAN 01, 2020
Manuka Honey Can Help Fight Infections After Surgery
Honey has been used in homeopathic medicine as a wound healer, and now researchers have developed a special application for it....
JAN 21, 2020
Microbiology
JAN 21, 2020
New Coronavirus is Spreading in China
In late December, health officials in China notified WHO that pneumonia with an unknown cause was sickening people....
FEB 04, 2020
Microbiology
FEB 04, 2020
Revealing How a Common Virus Evades the Immune System
The human metapneumovirus (HMPV) might now be well-known, but it is the second biggest cause of respiratory infections....
FEB 14, 2020
Microbiology
FEB 14, 2020
Beneath the Surface, We All Carry the Same Microbes in Our Skin
Our skin is a critical barrier, and it is made up of three layers. It also carries a community of microbes - a skin microbiome....
Loading Comments...