JAN 07, 2017 9:23 AM PST

The scoop on heavy metal toxicity

WRITTEN BY: Kerry Evans

The antibacterial properties of heavy metals have been appreciated for some time, but how the heck do they work?

This so-called “oligodynamic effect” was formally described by Karl Wilhelm von Nageli. He wasn’t the first person to realize that metals could be toxic to microbes, however. This property has been well recognized for centuries.

Many heavy metals are toxic to bacteria.

The Persians used copper and silver vessels to purify water and store food. Arsenic was used to treat syphilis, and physicians once used lead to cure infections. Today, gold is used in dentistry because it inhibits bacterial growth, and aluminum is a component of many antiseptics.

Many implanted medical devices and nanomaterials are also coated with metals such as copper. In this application, copper-coated surfaces rapidly kill bacteria on contact - within minutes to hours. Antimicrobial textiles and household products incorporate silver, copper, and zinc into what is called a zeolite carrier. Zeolite is a mineral that adsorbs water and ions from the environment. This process releases toxic metal ions, killing bacteria.

There are a number of mechanisms by which heavy metals are toxic to bacteria.

The first has to do with oxidative stress. One way that reactive oxygen species are generated in cells is through the Fenton reaction. This is one reason why there’s very little free iron floating around in cells (bacterial or mammalian), even though iron is critically important for the function of many enzymes. If there’s excess iron or copper in a cell, the Fenton reaction can occur, producing damaging reactive oxygen species.

Heavy metals can also interfere with how important enzymes work. Sometimes reactive oxygen species (generated by the Fenton reaction) can damage enzymes. In other cases, certain metals can take the place of other metal cofactors in enzymes. One example is in ribonucleotide reductase - an enzyme that’s important for DNA replication. Here, gallium can substitute for iron, causing all kinds of things to go haywire. In other cases, metals can oxidize amino acids near the catalytic sites of enzymes. Such damage can not only inhibit the enzyme’s function, but it may trigger degradation of the protein.

Copper and cadmium can also affect membrane stability, likely through lipid peroxidation. In other cases, some metals can disrupt the flow of electrons through the electron transport chain, affecting respiration.

Metals can also damage DNA, and that’s never a good thing. Reactive oxygen species (the Fenton reaction again) can affect DNA replication. Interestingly, copper can damage extracellular DNA that is released after a cell dies - preventing the horizontal transfer of antibiotic resistance genes, for example.

Bacteria are crafty, however, and many have developed resistance to heavy metal toxicity.

Metals are most toxic to bacteria once they enter the cell. Because of that, bacteria developed ways to pump the toxic metals back into the environment - usually through efflux pumps. In other cases, metals may be safely sequestered away inside the cell. In this same vein, many bacteria simply form biofilms to wall themselves off. Cells that are nearer the surface of the biofilm become quiescent, making themselves resistant to metals or other toxins in the environment. Because of this, cells deeper inside the biofilm can go about their business, protected from danger. Despite these resistance mechanisms, researchers are still working to harness the antimicrobial properties of metals.

Gallium nitrate, for example, is a potent antibiotic and antibiofilm agent. Solutions of aqueous gallium nitrate are particularly toxic to Pseudomonas aeruginosa, a prominent biofilm-forming human pathogen. Another option is to use metals in combination with traditional antibiotics. Bismuth compounds are already used in combination with antibiotics to treat Helicobacter pylori infections in the stomach. Finally, copper-silver ionization has been validated as a method to control the growth of Legionella in hospital water supplies.

Sources: Nature Reviews Microbiology, Infection control and hospital epidemiology, MicrobeWiki, Wikipedia

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 04, 2020
Microbiology
Researchers Discover a Way to Use Microbes to Help Make Plastic
SEP 04, 2020
Researchers Discover a Way to Use Microbes to Help Make Plastic
Researchers have discovered that some bacteria can make ethylene in a way we never knew about; microbes that metabolize ...
SEP 11, 2020
Chemistry & Physics
Indigenous fermentation processes require complex chemical reactions
SEP 11, 2020
Indigenous fermentation processes require complex chemical reactions
A study published in the Nature journal Scientific Reports uncovers the complex chemical processes behind aborigina ...
OCT 09, 2020
Microbiology
Two Early Relatives of Rubella Are Discovered
OCT 09, 2020
Two Early Relatives of Rubella Are Discovered
Rubella is a contagious, airborne viral infection that can lead to rash, fever, and sore throat. It's especially dangero ...
NOV 01, 2020
Microbiology
SARS-CoV-2 Disrupts the Blood Brain Barrier
NOV 01, 2020
SARS-CoV-2 Disrupts the Blood Brain Barrier
SARS-CoV-2, which causes COVID-19 has to get into cells to cause infection. It does so with a spike protein on its surfa ...
NOV 20, 2020
Microbiology
Heavy Metal Exposure Raises Levels of Antibiotic-Resistant Germs in Cows
NOV 20, 2020
Heavy Metal Exposure Raises Levels of Antibiotic-Resistant Germs in Cows
Antibiotic-resistant microbes are considered to be a major public health threat. The overuse of antibiotics is thought t ...
NOV 27, 2020
Microbiology
Understanding Why Flu Can be Fatal
NOV 27, 2020
Understanding Why Flu Can be Fatal
People that have the flu can usually recover on their own. But sometimes, influenza infections can be far more serious a ...
Loading Comments...