MAR 22, 2017 06:18 PM PDT

H. pylori Uses a pH-Responsive Protein to Adapt to Acidity

WRITTEN BY: Carmen Leitch

Helicobacter pylori is known to be a human pathogen; it can thrive in the acidic environment of the stomach and cause ulcers. New research has revealed that H. pylori utilizes a protein that enables to get a foothold in the lining of the stomach, normally a protective mucosal shield with a neutral pH. That protein, BabA adhesin, is responsive to pH levels, which allows H. pylori to detach from old cells rapidly, before stomach acids can do damage. The bacteria are able to return to the neutral lining, recycling the infection. The scientists, from Umeå University, have published their findings in Cell Host & Microbe; they are animated in the following video.

"We have shown earlier that H. pylori, which is one of the most common infections worldwide and the causative agent for peptic ulcer disease and also cancer, uses adhesin proteins to attach to the stomach," said the lead author of the work, Thomas Borén, a Professor at the Department of Medical Biochemistry and Biophysics at Umeå University in Sweden.

This new work suggests that daily recycling of the infection create an active evolutionary mechanism that acts to select the best fit bacterial cells for a given day and situation, adapting the infection, allowing it to survive and proliferate; it becomes a chronic infection. As BabA evolves to tolerate the high pH levels of the stomach, it may then be enabled to become cancerous.

"We have now found that the H. pylori's BabA attachment protein is equipped with a pH-sensor mechanism. This fascinating mechanism allows the bacterium to detach from the shedding stomach cells and swim back into the protective stomach lining when the bacteria become threatened by increasing acidity of surrounding gastric acid. This ingenious survival mechanism allows the bacterium to thrive in this extreme environment by recycling the stomach infection," said Borén.

The findings were made by an international collaborative effort that included researchers in Sweden at Umeå University, SciLifeLab in Solna, Gothenburg and Örebro universities, as well as scientists in Belgium, Germany, France, UK, Ireland, Greece, Ukraine, India and the United States. The team utilized biochemical techniques, genetic assays and H.pylori strains that have been both created for use in laboratories and samples collected from patients and animals over the course of many years.

H. pylori (dark green) uses a protein to attach tightly to cells in the stomach lining. The cells eventually dislodge in the rapid turnover of epithelial cells and leave the pH-neutral lining (see illustration background). An acid responsive inactivation of the protein detaches H. pylori before it reaches the gastric juice (red area) and the bacterium returns and reattaches to the stomach lining (blue area). / Credit & Illustration: Stefan Lindström

Unlike most other bacteria, H. pylori is well-suited to line in the stomach lining, specifically the gastric epithelium and in the thin layer of mucus that shields the wall of the stomach from peptic acid. The investigators have show that the BabA adhesin is responsive to changes in pH or acidity. Low pH levels, like that of gastric acid, disrupts binding activity in BabA. When acidity is neutralized, in other words when H. pylori relocates to the pH neutral lining of the stomach, the binding action is restored. It was also found that the number of pH-sensing sequences in the binding domain of BabA determines the level of pH sensitivity.

"Our findings suggest that BabA enables H. pylori to tightly adhere to the mucosal layer. But the pH-responsiveness also allows the bacterium to escape a certain death by detaching from epithelial- and mucus cells that are shed into the gastric juice," said the first author of the work, Jeanna Bugaytsova, a researcher at Department of Medical Biochemistry and Biophysics.

The research has indicated that inflammation and disease progression drives evolution and adaptation in the sensitivity of BabA adhesins to pH. That evolution is driven in turn by changes in gastric acidity, and the individual host, which manifest through mutation and recombination with genes that are related to BabA. Gastric acidity can change due to long-term medication use, like acid-suppressing drugs, or gastric disease.

"These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to the pathogen's persistence and ability to cause severe gastric disease," explained Thomas Borén.

It is estimated that half of the world population is infected with H. pylori, a bacterium that is able to quickly adapt to new gastric and disease environments. Many of those carriers have symptoms of gastritis;  roughly one in five will develop peptic ulcers at some point, which can be a serious and delay health issue. Antibiotics are used to treat gastritis and peptic ulcer disease are treated with antibiotics, some however, have to be treated with multiple courses of different antibiotics. A chronic infection can also develop and in the worst cases can cause gastric cancer, a deadly and very tough to treat type of cancer, which afflicts around 1 million people worldwide every year.

Sources: Medical Express via Umeå University, Cell Host & Microbe

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 21, 2018
Microbiology
SEP 21, 2018
Study Shows Probiotics Provide a Questionable Benefit at Best
Probiotics have entered the mass market as both food additives and supplements, and they have been touted as a health benefit....
OCT 01, 2018
Cell & Molecular Biology
OCT 01, 2018
Revealing How Antibiotics Work Against Bacteria
In a first, researchers have directly observed an antibiotic in action as it disrupted the membrane of a bacterial cell....
OCT 21, 2018
Microbiology
OCT 21, 2018
The Evolution and Spread of Drug-resistant Tuberculosis
Once thought to have come from Africa ~5,000 years ago, the dominant form of this pathogen really came from Europe, and colonialists spread it around the globe....
OCT 25, 2018
Microbiology
OCT 25, 2018
Single-cell Genomics Expands the Fungal Tree of Life
Our environment contains millions of other organisms, including fungal species that live in every conceivable place....
NOV 03, 2018
Microbiology
NOV 03, 2018
Potential new Tuberculosis Treatment Found in Dirt
The pathogen that causes TB has been able to evolve, and often, the typical therapeutic for the illness does not work....
NOV 12, 2018
Microbiology
NOV 12, 2018
Some Bacteria Gain Resistance Even Without Exposure to Antibiotics
Most bacteria are harmless, some are even beneficial to us. But some of the dangerous ones pose a real threat to public health....
Loading Comments...