AUG 24, 2017 5:25 PM PDT

Gaining Insight From the Microbiome of Athletes

WRITTEN BY: Carmen Leitch

To be the best, it takes a lot of work and usually a lot of natural talent; such is the case with elite athletes. Are they getting an edge over others not only from their abilities and their training but also from the microbes that live in their bodies as well? New research is digging into that question by analyzing the bacteria that inhabit the gastrointestinal (GI) tracts of stellar rowers and runners. Researchers found that specific microbes seem to help athletic performance. This work may be useful in the development of probiotic supplements specifically to aid athletes, whether professional or amateur; probiotics could help recovery time or make metabolism more efficient.

This work is described in the video above and has been presented at the 254th National Meeting & Exposition of the American Chemical Society (ACS).

"When we first started thinking about this, I was asked whether we could use genomics to predict the next Michael Jordan," said postdoctoral fellow Jonathan Scheiman. "But my response was that a better question is: Can you extract Jordan's biology and give it to others to help make the next Michael Jordan?"

Because the researchers know that we carry a tremendous number of microorganisms around with us, basically we have as many bacterial cells as we do cells of our own, so investigating the microbes was a good starting point. The community of microbes we carry around is our microbiome, those that live in the GI tract are part of the gut microbiome.

"The bugs in our gut affect our energy metabolism, making it easier to break down carbohydrates, protein, and fiber. They are also involved in inflammation and neurological function. So perhaps the microbiome could be relevant for applications in endurance, recovery and maybe even mental toughness," explained Scheiman, who works in George Church’s lab at Harvard Medical School.

For this study, the researchers collected fecal samples from 20 athletes on a daily basis, in the week before and the week after the 2015 Boston Marathon.

"For two weeks, I was driving around Boston collecting fecal samples and putting them on dry ice in the car," Scheiman said. "We followed athletes longitudinally to capture how the microbiome changes between performance and recovery."

Scanning Electron Micrograph of Enterococcus faecalis, a bacterium that commonly lives in mammalian GI tracts. / Credit: Wikimedia/CDC/Janice Haney Carr

With genomics technology, the investigators were able to identify the bacterial species that were present in the fecal samples, a standard way of assessing the composition of the gut microbiome. Assaying the pre- and post-race samples showed that the population of one type of bacteria spiked after the marathon. "This bug's natural function is to break down lactic acid," Scheiman explained. Intense exercise generates a lot of lactic acid, and muscle soreness or fatigue can result. This bacterium might help alleviate it.

After isolating the bacterium, the investigators confirmed that it’s skillful at breaking down lactic acid when tested in the lab, and it was able to survive a trip through a mouse’s digestive system. Current studies are evaluating whether the bacterium has an effect on fatigue and lactic acid levels in live mice.

Another project checked the bacteria carried by ultramarathoners and rowers that were in Olympic training. There was a bacterium in the ultramarathoners that could break down carbohydrates, but the rowers didn't carry the same microbe. It’s advantageous for marathoners to be able to efficiently metabolize carbohydrates during very long runs, suggesting that these athletes nurture specialized microbiomes.

Scheiman wants to bring his work to the market by starting a company: Fitbiomics. "I would like to think that a year after we launch, we could have a novel probiotic on the market," he said. "But in parallel we'll also be expanding our cohort of elite athletes from numerous sports to generate a larger microbial data and strain bank of novel probiotic candidates. In essence, we're mining the biology of the most fit and healthy people in the world and then extracting that information to help them and others."

 

 

Sources: Science Daily via American Chemical Society

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 20, 2021
Cell & Molecular Biology
Ribosomes Make Proteins & Now We Know How Ribosomes Are Made
SEP 20, 2021
Ribosomes Make Proteins & Now We Know How Ribosomes Are Made
Proteins are absolutely essential for the survival of organisms; they carry out many functions that are critical to life ...
OCT 13, 2021
Chemistry & Physics
The Nobel Prize in Chemistry
OCT 13, 2021
The Nobel Prize in Chemistry
It's Nobel Prize season, and the third to be awarded was in the field of Chemistry. The winners were two men working on ...
OCT 19, 2021
Microbiology
An Antibiotic May be Able to Reduce Inflammatory Pain
OCT 19, 2021
An Antibiotic May be Able to Reduce Inflammatory Pain
The gastrointestinal tract is full of microbes, all with their own genomes and characteristics. Some of those microbes a ...
OCT 25, 2021
Microbiology
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
OCT 25, 2021
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
Microbes are engaged in a never-ending battle, and they have ways of attacking each other as well as defense mechanisms.
NOV 11, 2021
Microbiology
Is Coronavirus Spillover More Common Than We Knew?
NOV 11, 2021
Is Coronavirus Spillover More Common Than We Knew?
While many people are most familiar with the coronavirus that causes COVID-19, which is called SARS-CoV-2, there are man ...
NOV 25, 2021
Microbiology
How Microbes Use Copper to Make an Antibiotic
NOV 25, 2021
How Microbes Use Copper to Make an Antibiotic
Copper is known to have antibacterial properties, and though it's an important chemical for many organisms, it can b ...
Loading Comments...