DEC 29, 2017 10:45 AM PST

Ancient Mutation may Help Explain Origin of Human Organs

WRITTEN BY: Carmen Leitch

Not all genetic mutations are harmful; some have no effect at all, and sometimes they might even be helpful. Researchers have reported that a neutral mutation having no real purpose and occurring randomly over 700 million years ago may help to explain the origins of complex structures like organs in humans and other vertebrates. These findings, led by CRG group leader Manuel Irimia, university professor Jordi García-Fernàndez, of the Faculty of Biology and the Institute of Biomedicine of the University of Barcelona (IBUB), and Maria Ina Arnone (Anton Dohrn Zoological Station, Italy, were reported in Nature Communications.

A sea anemone / Credit: Pixabay

For this kind of study, researchers compare the development of organisms from the embryo, which can show how different species arise. The mutation in this research happened around the time that our evolutionary ancestors split from sea anemones, and impacted a gene in the fibroblast growth factor receptors (Fgfr) family. This alteration in the genetic code linked the network of genes controlled by Fgfr to a network regulated by ESRP, a group of regulatory proteins. The resulting processes laid the groundwork for many structures in vertebrates like the inner ear, lungs, and forelimbs.

The same gene can give rise to different proteins that can act in entirely different ways by editing those genes a little differently, in a phenomenon called alternative splicing (check out a video explaining it below). ESRP controls that process in some human cells. Their presence or absence dictates what other kinds of proteins the cells end up producing. The ESRP family can also influence how cells interact with neighboring cells during the development of an embryo. It’s importance in evolution had not been revealed until now, however.

"We have studied the functions of ESRP genes during the embryogenesis of various animals. Our results suggest that these genes were part of an ancient genetic machinery, shared by animals as diverse as fish, sea urchins and ourselves, that controls the integration of certain cells into the linings of developing organs. This is a fundamental step in the formation of some organs, and it is the reverse of a process that is central to cancer metastasis, by which cells leave the tumor to colonize other parts of the body" explained Manuel Irimia.

This work suggests that chance has played a critical role in the development of our species and highlights the wildly different results that can be produced from small tweaks in the same gene.

"Clearly, the most exceptional result of the work is the proof of how important serendipity is for evolution. It is surprising to find that a single gene (ESRP), through its ancestral biological role (cell adherence and motility) has been used throughout the animal scale for very different purposes: from the immune system of an echinoderm to the lips, lungs or inner ears of humans," said professor Jordi Garcia-Fernàndez.

"The new discovery confirms how versatile biological evolution is: the same foundation and gene tools can be used to build a wood cabin or a skyscraper," concluded Garcia-Fernàndez.

The video above explains how scientists use the sequences of genes from different species to study evolution.

Sources: AAAS/Eurekalert! Via Center for Genomic Regulation, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 28, 2020
Microbiology
Potential Treatment ID'ed for Emerging Viral Disease
NOV 28, 2020
Potential Treatment ID'ed for Emerging Viral Disease
A mosquito-borne virus called VEEV has been emerging in South America. It causes symptoms that make it difficult to dist ...
DEC 11, 2020
Microbiology
When Microbes Battle for Survival, the Weakest Can Win
DEC 11, 2020
When Microbes Battle for Survival, the Weakest Can Win
Our world is filled with different types of bacteria, and they have to coexist with one another. They have to compete fo ...
DEC 19, 2020
Microbiology
How Ticks Are Protected From the Diseases They Carry
DEC 19, 2020
How Ticks Are Protected From the Diseases They Carry
Ticks are notorious vectors of disease, but they can transmit those illnesses without becoming infected themselves.
DEC 27, 2020
Microbiology
A Potential Treatment Approach for Crohn's Disease
DEC 27, 2020
A Potential Treatment Approach for Crohn's Disease
Researchers may have found a way to treat or prevent Crohn's disease, one of the most common forms of inflammatory bowel ...
JAN 03, 2021
Microbiology
Flu Season is Off to a Very Slow Start
JAN 03, 2021
Flu Season is Off to a Very Slow Start
The flu season would have typically been well underway by mid-December in a normal year. But this year, there are few ca ...
JAN 17, 2021
Microbiology
Gut Microbes May Play a Role in Anorexia
JAN 17, 2021
Gut Microbes May Play a Role in Anorexia
Eating disorders like anorexia nervosa and bulimia nervosa are illnesses that involve serious disturbances in eating beh ...
Loading Comments...