JAN 09, 2018 05:57 AM PST

Database for Functional Plant Microbiome Studies

WRITTEN BY: Carmen Leitch
2 14 710

Humanity will need to find solutions to feed a growing population; there are currently 7.6 billion people on the planet, and the number is expected to hit ten billion by 2050. The relationships between microbes and plants may provide new ways to improve agricultural yield in the face of environmental challenges like drought, make use of non-arable land, or reduce the impact on the environment caused by farming. To aid researchers who are investigating the community of microbes that live among plants and how they interact, scientists have identified genes that are likely candidates for assisting bacteria in the adaptation to the plant environment.

We must learn how to feed a growing population. / Image credit: Pexels

Previous work on the plant microbiome has focused on identifying the members of the bacterial community, and individual relationships between a bacterial strain and a plant. This work investigates genes that play a role in bacterial root colonization. It has been reported in Nature Genetics by scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility, and the Howard Hughes Medical Institute at the University of North Carolina at Chapel Hill (UNC).

"If we want to engineer the right microbiome to support plant growth, we need to understand the real function of the microbiome and not just sequence marker genes," explained the co-first author of the work Asaf Levy, a research scientist at the JGI. "Here we used a massive genomic and computational effort to address the fundamental and important question: 'How does the plant microbiome interact with the plant?'"

Most microbes interact with plants where the roots meet the soil. The researchers analyzed the genomes of 377 novel bacterial isolates taken from maize (51), poplar trees (135), Brassicaceae (191), in addition to 107 single bacterial cells taken from A. thaliana. The data were compared with available genomic information representing the main groups of bacteria that have been associated with plants as well as bacteria from totally different sources, like the human gut. This allowed the investigators to identify genes that are enriched in the genomes of microbes that are associated with plants, or not.

"It's very important for us to understand what genes and functions microbes use to colonize plants because only then might we have a chance to rationally devise useful 'plant probiotics' to help us raise more food and energy crops with fewer chemical inputs such as fertilizers and pesticides or fungicides," explained the senior author of the study Jeff Dangl, a Howard Hughes Medical Institute investigator and the John N. Couch Professor of Biology at the University of North Carolina at Chapel Hill.

This image depicts a phylogenetic tree of over 3,800 high quality and non-redundant bacterial genomes. Outer ring denotes the taxonomic group, central ring denotes the isolation source, and inner ring denotes the root-associated genomes within plant-associated genomes. Taxon names are color-coded based on phylum: green - Proteobacteria, red - Firmicutes, blue -Bacteroidetes, purple - Actinobacteria. / Credit: Asaf Levy, JGI

The scientists found that genes associated with the metabolism and transport of sugar are more common in plant- and soil-associated genomes, which tends to make them larger. Because of photosynthesis, plants secrete carbon from their roots as sugars, attracting microorganisms.

The researchers also found numerous genes that appear to mimic plant functions; they encode "Plant-Resembling PA and RA Domains" or PREPARADOs. "It is well known that plant pathogens use proteins that mimic plant domains required for immune function," said Dangl. "Imagine that the pathogen injects directly into the plant cell a protein that mimics part of a particular immune system machine. It's like putting a partly defective cog into a wheel--the wheels can't turn anymore. We reckon that the plant-associated protein domains that we identified might work in the same way."

A complete catalog of genes associated with plants and new genome sequences are now open to the research community through Genomic Features of Bacterial Adaptation to Plants. Laboratories interested in collaborating with the Berkeley Lab should check out IPO's Industry Partnerships and email ipo@lbl.gov.

"The database is a precious resource for the research community studying plant-microbe interactions as it is an unbiased way to identify potentially interesting genes involved in interaction with a plant--including many totally novel genes. We are currently experimentally studying the function of many of these genes to gain a better functional understanding of the plant microbiome." Levy concluded.


Sources: AAAS/Eurekalert! Via DOE/Joint Genome Institute, Nature Genetics

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 04, 2018
Cell & Molecular Biology
JUN 04, 2018
What is Molecular Engineering?
An emerging field of study, molecular engineering, has many potential applications; where this research will lead is unknown.
JUN 20, 2018
Immunology
JUN 20, 2018
Immune System Accidentally Allows Meningitis Brain Infection
Several immune cells help fungi infect the brain and cause meningitis when they should be doing the exact opposite. From the University of Sydney, research
JUL 04, 2018
Videos
JUL 04, 2018
How Did Viruses Originate?
There is still a debate about whether or not viruses are a form of life, and we really don't know where they came from.
JUL 29, 2018
Microbiology
JUL 29, 2018
Revealing why Sepsis Causes Organs to Fail
The Staphylococcus aureus bacterium can cause devastating illnesses - called staph infections - and lead to organ failure.
AUG 02, 2018
Immunology
AUG 02, 2018
Chronic Infections Outsmart the Immune System
Chronic parasitic infection shown to take advantage of a mechanism to sustain infection and induce death of white blood cells essential to immune response.
AUG 13, 2018
Immunology
AUG 13, 2018
Silent Viruses Impact Microbe and Immune Cell Populations
Subclinical infections may alter the immune system and gut microbiota in the human host impacting how we respond to environmental stimuli like vaccines.
Loading Comments...