APR 20, 2015 11:18 AM PDT

Could Maple Syrup Help Cut Use of Antibiotics?

WRITTEN BY: Judy O'Rourke
A concentrated extract of maple syrup makes disease-causing bacteria more susceptible to antibiotics, according to laboratory experiments by researchers at McGill University, Montreal.

The findings, which will be published in the journal Applied and Environmental Microbiology, suggest that combining maple syrup extract with common antibiotics could increase the microbes' susceptibility, leading to lower antibiotic usage. Overuse of antibiotics fuels the emergence of drug-resistant bacteria, which has become a major public-health concern worldwide.
Vimal Maisuria (left) and Nathalie Tufenkji in the lab.
Professor Nathalie Tufenkji's research team in McGill's Department of Chemical Engineering prepared a concentrated extract of maple syrup that consists mainly of phenolic compounds. Maple syrup, made by concentrating the sap from North American maple trees, is a rich source of phenolic compounds.

The researchers tested the extract's effect in the laboratory on infection-causing strains of certain bacteria, including E. coli and Proteus mirabilis (a common cause of urinary tract infection).

By itself, the extract was mildly effective in combating bacteria. But the maple syrup extract was particularly effective when applied in combination with antibiotics. The extract also acted synergistically with antibiotics in destroying resistant communities of bacteria known as biofilms, which are common in difficult-to-treat infections, such as catheter-associated urinary tract infections.

"We would have to do in vivo tests, and eventually clinical trials, before we can say what the effect would be in humans," Tufenkji says. "But the findings suggest a potentially simple and effective approach for reducing antibiotic usage. I could see maple syrup extract being incorporated eventually, for example, into the capsules of antibiotics."

The scientists also found that the extract affects the gene expression of the bacteria, by repressing a number of genes linked with antibiotic resistance and virulence.

All maple syrup samples used in the study were purchased at local markets in Montreal, then frozen until the beginning of each experiment, which involved a series of steps to produce the phenolic-rich extract.

Tufenkji, who holds the Canada Research Chair in Biocolloids and Surfaces, has also studied the potential for cranberry derivatives to fight infection-causing bacteria.

The article is "Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria," by Vimal B. Maisuria, Zeinab Hosseinidoust, and Nathalie Tufenkji.

[Source: McGill University]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
OCT 08, 2021
Microbiology
'Living Medicines' to Destroy Dangerous Biofilms
OCT 08, 2021
'Living Medicines' to Destroy Dangerous Biofilms
Bacteria that grow in colonies can be extremely difficult to eliminate; the bacteria in these groups often become resist ...
OCT 11, 2021
Genetics & Genomics
A Genetic Risk Factor is Shared by Alzheimer's and Severe COVID-19
OCT 11, 2021
A Genetic Risk Factor is Shared by Alzheimer's and Severe COVID-19
While amyloid plaques are a hallmark of Alzheimer's disease, the neurological disorder has also been linked to inflammat ...
OCT 22, 2021
Genetics & Genomics
Studying the Evolution of SARS-CoV-2 in One Patient Over 324 Days
OCT 22, 2021
Studying the Evolution of SARS-CoV-2 in One Patient Over 324 Days
To clear a viral infection, the human body has to mount an effective immune response. After detecting the pathogen, immu ...
NOV 25, 2021
Immunology
Battling Bacterial Pneumonia, No Antibiotics Required
NOV 25, 2021
Battling Bacterial Pneumonia, No Antibiotics Required
Instead of flooding the body with antibiotics, what if we could program cells to fight off pathogens more effectively? T ...
NOV 26, 2021
Coronavirus
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
NOV 26, 2021
Heavily Mutated COVID-19 B.1.1.529 Variant Emerges, WHO Names It Omicron
On Thursday, November 2021, South African health officials announced that they had identified a new variant of the pande ...
DEC 06, 2021
Microbiology
New Type of Antibiotic Targets the Bacterial Ribosome
DEC 06, 2021
New Type of Antibiotic Targets the Bacterial Ribosome
As pathogenic bacteria continue to evolve and find ways to evade common medications, researchers have been racing to dev ...
Loading Comments...