APR 20, 2015 11:07 AM PDT

Stronger Protein-Nanoparticle Marriage Shows Promise for HIV, Cancer Treatments

WRITTEN BY: Will Hector
Fastening protein-based medical treatments to nanoparticles isn't easy.

With arduous chemistry, scientists can do it. But like a doomed marriage, the fragile binding that holds them together often separates.

This problem, which has limited how doctors can use proteins to treat serious disease, may soon change.
The image above illustrates how proteins (copper-colored coils) modified with polyhistidine-tags (green diamonds) can be attached to nanoparticles (red circle).
University at Buffalo researchers have discovered a way to easily and effectively fasten proteins to nanoparticles -- essentially an arranged marriage -- by simply mixing them together. The biotechnology, described April 20 online in the journal Nature Chemistry, is in its infancy. But it already has shown promise for developing an HIV vaccine and as a way to target cancer cells.

"Scientists have been able to attach proteins to nanoparticles for a while now. But it's a fairly difficult process that's only effective in a controlled environment. Nobody has been able to devise a simple method that can work inside the body," said Jonathan F. Lovell, PhD, UB assistant professor of biomedical engineering, who led the research.

He added: "We have proven that you can easily attach proteins to nanoparticles and, like Velcro that doesn't unstick, it stays together."

Additional authors include researchers from UB's Department of Chemical and Biological Engineering and Department of Microbiology and Immunology.

To create the biotechnology, the researchers use nanoparticles made of chlorophyll (a natural pigment), phospholipid (a fat similar to vegetable oil) and cobalt (a metal often used to prepare magnetic, water-resistant and high-strength alloys).

The proteins, meanwhile, are modified with a chain of amino acids called a polyhistidine-tag. Uncommon in medicine, polyhistidine-tags are used extensively in protein research.

Next, the researchers mixed the modified proteins and nanoparticles in water. There, one end of the protein embeds into the nanoparticle's outer layer while the rest of it sticks out like a tentacle.

To test the new binding model's usefulness, the researchers added to it an adjuvant, which is an immunological agent used to enhance the efficacy of vaccines and drug treatments. The results were impressive. The three parts -- adjuvant, protein and nanoparticle -- worked together to stimulate an immune response against HIV.

The researchers also tested proteins that target cancer cells. Again, the results were exciting, with the new binding model acting like a homing missile to tumors. The targeted nanoparticles have the potential to improve cancer treatment by targeting specific cancer cells in lieu of releasing anti-cancer drugs everywhere in the body.

Lovell plans to follow up the research with more rigorous testing of the vaccine and tumor-targeted technologies. Moving to human clinical trials is the ultimate goal.

Follow Will Hector: @WriteCompassion

(Sources: University of Buffalo; Science Daily)
About the Author
Will Hector practices psychotherapy at Heart in Balance Counseling Center in Oakland, California. He has substantial training in Attachment Theory, Hakomi Body-Centered Psychotherapy, Psycho-Physical Therapy, and Formative Psychology. To learn more about his practice, click here: http://www.heartinbalancetherapy.com/will-hector.html
You May Also Like
OCT 24, 2022
Neuroscience
Why is the Risk of Alzheimer's Higher in Women?
OCT 24, 2022
Why is the Risk of Alzheimer's Higher in Women?
Women tend to get Alzheimer's disease at a significantly higher rate than men; about two-thirds of people with the neuro ...
OCT 28, 2022
Coronavirus
The New GenEluteā„¢-E Viral RNA/DNA Kit
OCT 28, 2022
The New GenEluteā„¢-E Viral RNA/DNA Kit
Three Advantages: Reduction in plastic use Time savings Better results Nucleic acids play an essential role in the funct ...
OCT 30, 2022
Neuroscience
Why Fear Memories Can Persist in the Brain
OCT 30, 2022
Why Fear Memories Can Persist in the Brain
People have to experience fear so they can learn to avoid dangerous situations. But some memories can be more persistent ...
NOV 05, 2022
Health & Medicine
Autism Study Reveals Widespread Transcriptomic Changes in the Brain
NOV 05, 2022
Autism Study Reveals Widespread Transcriptomic Changes in the Brain
We know of some risk factors for autism spectrum disorder, and like other neuropsychiatric disorders, there is a genetic ...
NOV 25, 2022
Drug Discovery & Development
Leprosy-causing Bacteria Generate Healthy Livers in Armadillos
NOV 25, 2022
Leprosy-causing Bacteria Generate Healthy Livers in Armadillos
Bacteria that cause leprosy may be able to regenerate liver cells in adult animals without negative side effects. The co ...
NOV 28, 2022
Immunology
New Insights Into How Fats Can Affect Immunity
NOV 28, 2022
New Insights Into How Fats Can Affect Immunity
Immunity is closely linked to metabolism, and in recent years, scientists have found that fat molecules, or lipids, can ...
Loading Comments...