JUL 19, 2015 5:25 PM PDT

Remote Control Drug Delivery to the Brain

WRITTEN BY: Ilene Schneider
Using light to remotely activate drugs could be the next big thing in treating pain, depression, epilepsy and other neurological disorders. Researchers at Washington University in St. Louis have demonstrated the technology in mice in research funded by the National Institute on Drug Abuse, the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke and the Common Fund of the National Institutes of Health. Their work on optogenetics, a technology that makes individual brain cells sensitive to light and then activates those targeted populations of cells with flashes of light, was published in Cell and reported by Jim Dryden in Futurity (http://feedly.com/i/subscription/feed/http://www.futurity.org/feed/).
Optogenetics technology administers drugs to brain cells by using light.
According to an article in Scientific American, optogenetics combines genetics and optics to control well-defined events within specific cells of living tissue. It includes "the discovery and insertion into cells of genes that confer light responsiveness; the associated technologies for delivering light deep into organisms as complex as freely moving mammals, for targeting light-sensitivity to cells of interest, and for assessing specific readouts, or effects, of this optical control." Optogenetics has the potential for control over defined events within defined cell types at defined times, a level of precision that is most likely crucial to biological understanding even beyond neuroscience. It enables scientist to understand the significance of any event in a cell in the context of the other events occurring around it in the rest of the tissue, the whole organism or even the larger environment (http://www.scientificamerican.com/article.cfm?id=optogenetics-controlling).)

As explained by co-principal investigator Michael R. Bruchas, associate professor of anesthesiology and neurobiology at Washington University in St. Louis, "In the future, it should be possible to manufacture therapeutic drugs that could be activated with light. With one of these tiny devices implanted, we could theoretically deliver a drug to a specific brain region and activate that drug with light as needed. This approach potentially could deliver therapies that are much more targeted but have fewer side effects."

While prior attempts to deliver drugs or other substances to experimental animals have necessitated tethering the animals to pumps and tubes, the new devices have four chambers to carry drugs directly into the brain. In the process of activating brain cells with drugs and light, the scientists can see the inner workings of the brain.

John A. Rogers, the study's other co-principal investigator and professor of materials science and engineering at the University of Illinois, summarizes, "We've successfully produced and demonstrated an implantable, cellular-scale microfluidic and micro-optical interface to biology, with application opportunities not only in the brain but in other parts of the nervous system and other organs as well."
About the Author
Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
JUL 18, 2022
Neuroscience
Lifestyle, More than Age, May Predict Dementia Risk
JUL 18, 2022
Lifestyle, More than Age, May Predict Dementia Risk
Multiple lifestyle risk factors for dementia may predict dementia risk more than age. The corresponding study was publis ...
JUL 18, 2022
Neuroscience
Maternal Milk for Preterm Infants Linked to Better Academic Performance, Lower ADHD Risk
JUL 18, 2022
Maternal Milk for Preterm Infants Linked to Better Academic Performance, Lower ADHD Risk
Babies born preterm who are fed maternal milk have greater academic achievement, higher IQ’s, and a lower risk of ...
JUL 19, 2022
Drug Discovery & Development
Experimental Cancer Drug Regrows Nerves in Spinal Cord Injury
JUL 19, 2022
Experimental Cancer Drug Regrows Nerves in Spinal Cord Injury
An experimental cancer drug can regenerate damaged nerves following spinal trauma in mice and rats. The corresponding re ...
AUG 03, 2022
Neuroscience
Children Use Creativity in Response to Novel Tasks
AUG 03, 2022
Children Use Creativity in Response to Novel Tasks
A study by a research group at the Max Planck Institute examined how children employ creativity when faced with novel ta ...
SEP 04, 2022
Drug Discovery & Development
Deep Brain Stimulation Shows Promise for Binge-Eating Disorder
SEP 04, 2022
Deep Brain Stimulation Shows Promise for Binge-Eating Disorder
Deep brain stimulation (DBS) may help control symptoms of binge-eating disorder and induce weight loss. The correspondin ...
SEP 15, 2022
Neuroscience
Food Insecurity Affects Brain Development
SEP 15, 2022
Food Insecurity Affects Brain Development
A recent study found that food insecurity affects brain development in mice. University of California Berkeley researche ...
Loading Comments...