AUG 12, 2015 10:06 PM PDT

Brain Receptors Control Behavior

WRITTEN BY: Ilene Schneider
Losing a critical receptor in a special class of inhibitory neurons in the brain may cause neurodevelopmental disorders, such as autism and schizophrenia, according to new research by Salk Institute's Computational Neurobiology Laboratory scientists. While the importance of the receptor, mGluR5, in other areas of the brain had been established, no one had studied its specific role in a cell type known as parvalbumin-positive interneurons. The neurons are considered important in developing general cognition and generating certain types of oscillatory wave patterns in the brain, according to research published in Molecular Psychiatry on August 11, 2015, and reported in Bioscience Technology (http://www.biosciencetechnology.com/news/2015/08/receptors-brain-linked-schizophrenia-autism?et_cid=4736557&et_rid=45505806&type=cta).
Neurodevelopmental disorders can be caused by the loss of a receptor in neurons.
As Terrence Sejnowski, head of Salk's Computational Neurobiology Laboratory, explained, "We found that without this receptor in the parvalbumin cells, mice have many serious behavioral deficits, and a lot of them really mimic closely what we see in schizophrenia."

Scientists had previously discovered that when molecular signaling was disrupted in these cells during development, the brain's networks didn't form correctly. Separate studies have revealed that mGluR5 receptors, which transmit glutamate signaling in the brain, are linked to addiction disorders, anxiety and Fragile X Syndrome. But, in these cases, mGluR5 is affected in excitatory cells, not inhibitory cells like the parvalbumin-positive interneurons.

In 2014 researchers at Washington University in St. Louis concluded that the problems people with autism have with memory formation, higher-level thinking and social interactions may be partially attributable to the activity of receptors inside brain cells. They discovered that the mGlu5 receptor becomes activated when it binds to the neurotransmitter glutamate, which is associated with learning and memory. This leads to chain reactions that convert the glutamate's signal into messages traveling inside the cell (http://www.sciencedaily.com/releases/2014/03/140326141654.htm).

The Salk team questioned the role of mGluR5 in the parvalbumin cells, because the cells were considered so important in brain development. They worked with Athina Markou's team from the Department of Psychiatry at the University of California, San Diego, to examine what occurred when the receptor was "selectively deleted from these cells after the brain's initial formation." They discovered that without the receptor in these cells, mice had numerous developmental problems, including "obsessive, repetitive grooming behavior and anti-social tendencies." Additionally, the patterns of activity in the animals' brains resembled patterns observed in humans suffering from schizophrenia.

"This discovery implies that changes after birth, not just before birth, are affecting the way the network is set up," said Margarita Behrens, corresponding author and Salk staff scientist.

According to Sejnowski, the findings indicate that an alteration in mGluR5 receptors in these brain cells could lead to the formation of some neurodevelopmental disorders. He believes that the molecular change is potentially reversible.

He concluded, "The cells are still alive, and if we can figure out how to go in and change some of these molecular switches, we might actually be able to put the cells back into healthy, functioning states."
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
MAR 01, 2020
Neuroscience
MAR 01, 2020
AI Robot Boosts Social Skills in Autistic Children
A team of researchers from the University of Southern California have developed a “socially assistive robot” ...
MAR 08, 2020
Plants & Animals
MAR 08, 2020
Rats May Not Like Hurting Other Rats
People generally avoid hurting others because they feel a sense of empathy, which is the ability to share or understand ...
APR 02, 2020
Cell & Molecular Biology
APR 02, 2020
Cooling Injured Brain Cells Can Aid Recovery
According to the CDC, in 2014 there were around 2.87 million incidences of TBI-related ER visits.
APR 20, 2020
Neuroscience
APR 20, 2020
Noninvasive Magnetic Stimulation Improves Working Memory
Neuroscientists from the Research Center of Neurology and Skoltech have found that noninvasive magnetic stimulation may ...
MAY 08, 2020
Cannabis Sciences
MAY 08, 2020
Why Your Dreams Get More Intense When You Quit Cannabis
Upon quitting cannabis, many notice their dreams become a lot more vivid and intense. But why?  To answer that ques ...
MAY 19, 2020
Neuroscience
MAY 19, 2020
Researchers Find Brain Cells that Shut Down Pain
Researchers at Duke University have found that a small group of cells in the brain may be able to regulate our sense of ...
Loading Comments...