SEP 25, 2019 1:30 PM PDT

Nanolaser designed to function in brain tissue

Scientists have developed a nanolaser (miniaturized laser) that can function inside living tissues. According to researchers, the laser is about 1/1,000th the thickness of a single human hair. This means that the laser can fit inside living tissues and sense disease biomarkers or treat neurological disorders that result from dysfunctional brain structures deep inside the brain, such as epilepsy.

In a recent paper published in Nature Methods, Drs. Teri Odom and P. James Schuck from Northwestern and Colombia Universities showcased a nanolaser made mostly of glass (a biocompatible material) that can both excite at longer wavelengths of light and emit short wavelengths. The depth of tissue penetration is key.

"Longer wavelengths of light are needed for bioimaging because they can penetrate farther into tissues than visible wavelength photons," said Northwestern's Teri Odom, co-author of the paper and Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences. "But shorter wavelengths of light are often desirable at those same deep areas. We have designed an optically clean system that can effectively deliver visible laser light at penetration depths accessible to longer wavelengths."

Importantly, given its small size, the nanolaser can function in tight spaces. Many biological applications, such as use in living tissues, require small lasers. The problem is that these lasers are much less efficient because they require much shorter (and ultimately more damaging) wavelengths, such as ultraviolet light, to power them. Researchers solved this issue by using a method called photom upconversion. Briefly, during upconversion, low-energy photons are absorbed and converted into one (more powerful) photon. The team started with low-energy, “bio-friendly” infrared photons and upconverted them to visible lasers.

"Our nanolaser is transparent but can generate visible photons when optically pumped with light our eyes cannot see," said Odom. "The continuous wave, low-power characteristics will open numerous new applications, especially in biological imaging."

These new nanolasers are "Excitingly, our tiny lasers operate at powers that are orders of magnitude smaller than observed in any existing lasers," Schuck said.

Source: EurekAlert!, ScienceDaily

About the Author
You May Also Like
AUG 31, 2021
Clinical & Molecular DX
How Quickly Will Alzheimer's Progress? Inflammatory Proteins Have the Answers.
AUG 31, 2021
How Quickly Will Alzheimer's Progress? Inflammatory Proteins Have the Answers.
Alzheimer's is a neurodegenerative disease that affects over 26 million worldwide and is associated with memory prob ...
AUG 31, 2021
Coronavirus
Researchers Use Newer Approach to Analyze Long Haul COVID-19 and Post Traumatic Stress Symptoms
AUG 31, 2021
Researchers Use Newer Approach to Analyze Long Haul COVID-19 and Post Traumatic Stress Symptoms
fMRI of some COVID-19 survivors suffering from posttraumatic stress symptoms reveal altered functional brain connectivit ...
SEP 27, 2021
Cell & Molecular Biology
Optical Imaging in Tissue with Near-Infrared Dyes
SEP 27, 2021
Optical Imaging in Tissue with Near-Infrared Dyes
Optical Imaging in Tissue with Near-Infrared Dyes Written By Christopher Pratt, PhD   Go Long to See Deeper Imaging ...
OCT 04, 2021
Drug Discovery & Development
Tylenol During Pregnancy Linked to Developmental Disorders
OCT 04, 2021
Tylenol During Pregnancy Linked to Developmental Disorders
The use of common painkiller acetaminophen (APAP), also known as paracetamol and often sold as Tylenol, during pregnancy ...
OCT 12, 2021
Cell & Molecular Biology
Is It the Junk [DNA] That Makes Our Brains Human?
OCT 12, 2021
Is It the Junk [DNA] That Makes Our Brains Human?
Scientists have long sought to understand what makes us human. From the standpoint of DNA sequences, we have a lot in co ...
OCT 13, 2021
Cardiology
Post-traumatic Stress Disorder and Stroke: Far More Than Meets the Eye
OCT 13, 2021
Post-traumatic Stress Disorder and Stroke: Far More Than Meets the Eye
There are few acute medical conditions more devastating than a stroke. Contrary to popular belief, not all stroke victim ...
Loading Comments...