OCT 24, 2019 4:10 PM PDT

Alcohol Consumption Linked to Epigenetic Changes in Brain Memory System

For a recovering alcoholic, walking by a familiar bar or attending social events can be challenging situations. This is because stimuli associated with alcohol – such as the sight of a glowing neon bar sign or running into an old drinking buddy – can trigger memories of past drinking, leading to an intense need for alcohol and relapse.

Now, scientists have figured out how alcohol use drives changes in the brain that lead to relapse, specifically by linking alcohol metabolism to epigenetic regulation.

Once consumed, alcohol is broken down by the liver into several chemical byproducts, including acetate. In a paper published in Nature, a team led by the Perelman School of Medicine at the University of Pennsylvania found that (in a mouse) acetate travels to the brain and alters proteins that regulate DNA, known as histones. Histone modification is an epigenetic change that impacts how some genes are expressed and ultimately affects behavior.

"It was a huge surprise to us that metabolized alcohol is directly used by the body to add chemicals called acetyl groups to the proteins that package DNA, called histones," said the study's senior author Dr. Shelley Berger, the Daniel S. Och University Professor in the departments Cell and Developmental Biology and Biology, and director of the Penn Epigenetics Institute. "To our knowledge, this data provides the first empirical evidence indicating that a portion of acetate derived from alcohol metabolism directly influences epigenetic regulation in the brain."

In the study, Dr. Philipp Mews, a former graduate student in the Berger lab who is now a postdoctoral fellow at Mount Sinai, and Dr. Gabor Egervari, a postdoctoral fellow in Berger's lab first used stable-isotope labeling of alcohol to reveal that alcohol metabolism directly deposits acetyl groups onto histones – a process called histone acetylation – via an enzyme named ACSS2.

ACSS2 'fuels' a whole machinery of gene regulators 'on-site' in the nucleus of nerve cells to turn on key memory genes that are important for learning, authors said.

Next, researchers wondered if there was a link between histone acetylation (via ACSS2) and alcohol-related memories.

In an additional experiment, mice were exposed to “neutral” and alcohol rewards in two different compartments of a special behavior apparatus distinguished by environmental cues. If mice properly formed alcohol-related memories, when given a memory test, they should prefer (or spend more time in) the compartment where they drank alcohol in the past. Indeed, during the test, mice with normal ACSS2 levels preferred the alcohol-paired side, whereas mice with reduced ACSS2 levels in brain regions important for learning and memory, such as the hippocampus, did not show a compartment preference.

"This indicates to us that that alcohol-related memory formation requires ACSS2," Egervari said. "Our molecular and behavioral data, when taken together, establish ACSS2 as a possible intervention target in alcohol use disorder – in which memory of alcohol-associated environmental cues is a primary driver of craving and relapse even after protracted periods of abstinence."

Thus, interfering with ACSS2 could be a way to dampen the formation or influence of powerful alcohol-related memories in those suffering from alcohol addiction.

Researchers also explored how alcohol consumption in pregnant mice affected the brains of their developing pups and found similar alcohol-induced epigenetic changes in fetal brains during early neural development. Although manipulating a key enzyme in humans is far-fetched, results from this study could inform treatments for alcohol-use disorder and fetal alcohol syndrome.

Sources: Genetic Engineering & Biotechnology News, EurekAlert!, ScienceDaily

About the Author
You May Also Like
SEP 14, 2020
Clinical & Molecular DX
Peek into the Inner Workings of the Spinal Cord
SEP 14, 2020
Peek into the Inner Workings of the Spinal Cord
Scientists have established a state-of-the-art method for observing and analyzing the complex flurry of neurological act ...
SEP 21, 2020
Neuroscience
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
SEP 21, 2020
Scientists Compare Structural and Functional Evolution with First Atlas of Cavefish Brains
Cavefish are fish that dwell in caves, unable to access the outside world. Often, they were separated from their closest ...
OCT 01, 2020
Immunology
Immune Cells and MS: The Good, the Bad, and the Maybe
OCT 01, 2020
Immune Cells and MS: The Good, the Bad, and the Maybe
Much like electrical wires that are encased in plastic insulating sheaths, nerve cells also are also surrounded by a sim ...
OCT 12, 2020
Cannabis Sciences
Can Cannabis Relieve Symptoms of Down Syndrome?
OCT 12, 2020
Can Cannabis Relieve Symptoms of Down Syndrome?
Increasing anecdotal and academic evidence has been emerging in recent years about the plethora of health benefits behin ...
OCT 21, 2020
Immunology
CNS's immune cells - Microglia are involved in the exacerbation of MS
OCT 21, 2020
CNS's immune cells - Microglia are involved in the exacerbation of MS
Multiple sclerosis (MS) is one of the most progressive autoimmune diseases that affect the central nervous system where ...
OCT 14, 2020
Neuroscience
Researchers Pinpoint Neurons Affected by Epilepsy
OCT 14, 2020
Researchers Pinpoint Neurons Affected by Epilepsy
Video: Explains in more detail the different receptors affected by epilepsy. Researchers at the University of Copenhagen ...
Loading Comments...