OCT 21, 2015 5:07 AM PDT

Building a Better Brain Electrode

While there are many ways to image the brain including CT scans, PET scans and MRIs, the best way to observe and monitor brain activity is by directly placing electrodes and nanowires into brain tissue. Of course this has consequences such as tissue damage, infection and even bleeding. While some electrodes are very small, and wires can be extremely thin,  brain monitoring apparatus is difficult to use and balancing the benefit against the risks has been a challenge for neuroscientists.
 
A tiny electrode developed at Lund University

Researchers at Lund University in Sweden may have a solution. A team of scientists at the Department of Experimental Medical Science, at the Neuronano Centre at the university have been working for almost nine years on electrodes that can be implanted in the brain on a long-term basis. It’s no easy task, but a paper recently published in the journal Frontiers of Neuroscience details their project which includes the development of electrodes that can capture signals from single neurons in the brain over time and yet still not cause brain tissue damage.
 
Professor Jens Schouenborg led the project together with Dr Lina Pettersson. If their prototypes work and can be tolerated by human patients it would go a long way towards understanding brain function not only in patients with neurological conditions, but in healthy subjects as well.

In a press release from the Lund University Professor Jens Schouenborg said, “There are several elements that must go hand in hand for us to be able to record neuronal signals from the brain with decisive results. First, the electrode must be bio-friendly, that is, we have to be confident that it does not cause any significant damage to the brain tissue. Second, the electrode must be flexible in relation to the brain tissue. Remember that the brain floats in fluid inside the skull and moves around when we, for instance, breathe or turn our heads. The electrode and the implantation technology that we have now developed have these properties, which is unique.” 

The electrodes, which the Lund team calls “3-D Electrodes” are unlike any others. They are made so that they can be flexed in all three dimensions, and are extremely soft. This kind of construction makes it possible for the electrodes to stay in the brain tissue longer than other stiffer models. It’s a matter of getting the technology just right. Electrodes that are too flexible will not hold their position in the brain. Those that are too stiff can cause tissue damage, cell death and other complications.

They start out as very thin slices of gold measuring just 10 microns in thickness. Using a laser cutter, they cut into very precise specific shapes and insulated with a polymer called parylene C. Finally, they are coated in layers of gelatin to make them firm enough to be inserted into the brain. Once there, the gelatin coating dissolves and the electrode is left in place. 
 
The Lund team hopes to build on their research which used lab rats as subjects and develop the electrodes for use in human trials. Check out the video below to see more about this advance in neuroscience.
 
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
JUL 21, 2021
Technology
Digital App Helps People Make Positive Eating-Habit Changes
JUL 21, 2021
Digital App Helps People Make Positive Eating-Habit Changes
We all have moments where the only thing that can comfort us is food, and a lot of it. However, such behavior can very q ...
JUL 27, 2021
Neuroscience
Proportion of Neurotransmitters in the Brain Predict Math Ability
JUL 27, 2021
Proportion of Neurotransmitters in the Brain Predict Math Ability
According to researchers at the University of Oxford in the UK, the proportion of two common neurotransmitters in the br ...
AUG 01, 2021
Drug Discovery & Development
Berry Compound Reverses Parkinson's in Mice
AUG 01, 2021
Berry Compound Reverses Parkinson's in Mice
A naturally-occurring compound called farnesol found in berries and other fruits prevents and reverses Parkinson's-a ...
AUG 01, 2021
Neuroscience
Keto-based Dietary Supplement Reduces Epileptic Seizures
AUG 01, 2021
Keto-based Dietary Supplement Reduces Epileptic Seizures
K.Vita, a dietary supplement, reduced seizures by 50% in adults and children with drug-resistant epilepsy in its first c ...
AUG 08, 2021
Cell & Molecular Biology
How Stress Can Impact Gene Expression in the Brain
AUG 08, 2021
How Stress Can Impact Gene Expression in the Brain
University of Bristol researchers have learned more about how chronic stress may be linked to health problems, both phys ...
SEP 15, 2021
Neuroscience
Motor Cortex Involved in Vocabulary Learning
SEP 15, 2021
Motor Cortex Involved in Vocabulary Learning
The motor cortex, the part of the brain involved in the planning, control, and execution of voluntary movements, may pla ...
Loading Comments...