JUN 28, 2021 3:37 PM PDT

New Findings in Mouse Brains Could Improve Neurological Research

WRITTEN BY: Annie Lennon

Researchers led by the University of California have found important neurological differences between human and mouse brains that could have implications for future neurological research. 

While mouse models are used in research for treatments for neurological disorders, over 90% of drug candidates that pass mouse models fail in humans. One reason this happens is due to our lack of knowledge on the differences between astrocytes and other brain cells in both species. 

Astrocytes are critical for brain development and function. The most numerous cell type in the central nervous system, they perform many tasks including supporting other neurons and controlling the blood-brain barrier and blood flow. While injury or infection can cause astrocytes to aid in the repair of the brain, they can also increase rates of inflammation, leading to neurological damage. 

For the study, the researchers examined developing cells from mouse and human brain tissue, alongside cells grown in serum-free cultures from astrocytes selected using an antibody-based method. 

The researchers chose to grow cells in a serum-free culture as often, serums, containing a mixture of proteins, hormones, fats and minerals, can put astrocytes in a reactive state similar to that caused by infection or injury. Being able to grow the cells without serum thus allowed the researchers to study them in a healthy state and better control for oxidative stress, oxygen levels and inflammation. 

From experiments with the cells, the researchers found that mouse astrocytes are more resilient to oxidative stress than human versions. Unlike in human astrocytes, a lack of oxygen triggers molecular repair mechanisms in those of mice. 

The researchers say that their findings mean that lab models using mice for neurodegeneration could be engineered to reduce astrocytes’ natural resistance to oxidative stress, thus making them more reflective of human tissues. They also said that the mouse astrocytes' ability to repair following restricted oxygen may inform new avenues for stroke research. 

 

Sources: LabRoots, NCBIEurekAlertNature Communications

About the Author
  • Annie Lennon is a writer whose work also appears in Medical News Today, Psych Central, Psychology Today, and other outlets. When she's not writing, she is COO of Xeurix, an HR startup that assesses jobfit from gamified workplace simulations.
You May Also Like
JUL 08, 2021
Cannabis Sciences
High-potency Cannabis Impacts Memory, but not Decision-Making
JUL 08, 2021
High-potency Cannabis Impacts Memory, but not Decision-Making
High-potency cannabis products impair memory in various ways, according to new research published in Scientific Rep ...
JUL 18, 2021
Neuroscience
How Slime Molds Think Without a Brain
JUL 18, 2021
How Slime Molds Think Without a Brain
A brainless slime mold known as Physarum polycephalum uses its body to sense mechanical cues in its environment. Then, i ...
AUG 10, 2021
Neuroscience
Is consciousness a quantum phenomenon?
AUG 10, 2021
Is consciousness a quantum phenomenon?
Researchers experiments with quantum fractals reveal promising direction for consciousness research
AUG 20, 2021
Technology
"Gamified" Digital Therapeutic Helps Reduce Anxiety
AUG 20, 2021
"Gamified" Digital Therapeutic Helps Reduce Anxiety
Who said games can’t be therapeutic? According to a recent study published in Frontiers in Neurology, a gamified d ...
AUG 23, 2021
Genetics & Genomics
A Conductor of the Circadian Rhythm is Identified
AUG 23, 2021
A Conductor of the Circadian Rhythm is Identified
The daily cycle of the planet is reflected in the biology of plants and animals. Even our cells are influenced by what&# ...
AUG 28, 2021
Neuroscience
Postponing Retirement May Protect Cognitive Function
AUG 28, 2021
Postponing Retirement May Protect Cognitive Function
Retiring at a later age may protect against cognitive decline. The corresponding study was published in SSM- Popula ...
Loading Comments...