NOV 21, 2014 12:00 AM PST

Researchers Call Brain Anatomy Differences Between Autistic and Typically Developing Individuals Indistinguishable

WRITTEN BY: Ilene Schneider
Researchers from Ben-Gurion University of the Negev (BGU) and Carnegie Mellon University have shown that the brain anatomy in MRI scans of people above age six with autism is mostly indistinguishable from that of typically developing individuals and, therefore, of little clinical or scientific value. The study, "Anatomical Abnormalities in Autism?" was published in the Oxford journal, Cerebral Cortex.

"Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years," said Dr. Ilan Dinstein of BGU's Departments of Psychology and Brain and Cognitive Sciences. "Previous hypotheses suggesting that autism is associated with larger intra-cranial gray matter, white matter and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes, were mostly refuted by this new study."

The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across autism and control groups and resolve many outstanding questions. This database is a worldwide collection of MRI scans from more than 1,000 individuals (half with autism and half controls) ages six to 35 years old.

"In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region," Dinstein explained. The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses.

"The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups," Dinstein explains. "For example, individuals in the control group differ by 80 to 90 percent in their brain volumes, while differences in brain volume across autism and control groups differed by two to three percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of Autistic Spectrum Disorder (ASD)," he states.

"These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology," he continued.

Dinstein believes that more complex explanations involving combinations of measures in more homogeneous sub-groups are likely to be the answer. "Expecting to find a single answer for the entire ASD population is naïve. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups," he said.

This conclusion stands in sharp contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. "The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions," Dinstein explained.

"In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he said. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates."

Other researchers who participated in this study include Dr. Sigal Berman of BGU's Department of Industrial Engineering and Management, Prof. Marlene Behrmann of Carnegie Mellon University's Department of Psychology, and Shlomi Haar, a doctoral student in BGU's Department of Brain and Cognitive Sciences. This work was supported by Simons Foundation SFARI grant 177638 (M.B. and I.D.).
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
SEP 14, 2020
Clinical & Molecular DX
Peek into the Inner Workings of the Spinal Cord
SEP 14, 2020
Peek into the Inner Workings of the Spinal Cord
Scientists have established a state-of-the-art method for observing and analyzing the complex flurry of neurological act ...
OCT 12, 2020
Cannabis Sciences
Can Cannabis Relieve Symptoms of Down Syndrome?
OCT 12, 2020
Can Cannabis Relieve Symptoms of Down Syndrome?
Increasing anecdotal and academic evidence has been emerging in recent years about the plethora of health benefits behin ...
OCT 30, 2020
Neuroscience
Why Older People Lose Motivation to Learn
OCT 30, 2020
Why Older People Lose Motivation to Learn
Researchers from MIT have identified a brain circuit that may explain why, as people age, they tend to lose motivation t ...
NOV 14, 2020
Cell & Molecular Biology
Towards a Better Characterization of Neurons
NOV 14, 2020
Towards a Better Characterization of Neurons
The human body is made up of a wide array of different types of cells, and if we want to understand human diseases and t ...
NOV 18, 2020
Clinical & Molecular DX
Nerve Damage as a Prognostic Marker for Rare Autoimmune Disease
NOV 18, 2020
Nerve Damage as a Prognostic Marker for Rare Autoimmune Disease
Researchers have identified a new prognostic biomarker for Guillain-Barré syndrome (GBS), a rare autoimmune disor ...
NOV 29, 2020
Genetics & Genomics
Gene Therapy for Eye Disorder May Have Other Applications
NOV 29, 2020
Gene Therapy for Eye Disorder May Have Other Applications
In recent years, scientists have been able to develop gene therapies to treat some eye diseases. The eyes are uniquely q ...
Loading Comments...