MAR 01, 2016 5:30 AM PST

Fewer Synapses in the Brain

The vast network of neurons, dendrites, axons and other hardware that is responsible for sending messages all over the body is incredibly complex. Nothing can work without this supercomputer processing and sending signals in exactly the right order and time. It’s an area of neuroscience that researchers are constantly studying. If more can be found out about how it works, then treatments can be found for when it doesn’t work properly.
Synapses are the transmission areas of the brain
One of the recent advances in this area comes from Columbia University scientists who have developed a new optical technique to study how information is transmitted in the brains of mice. With so many signals zipping through the brain, they expected that there were be many connections throughout the brain. These connections are called synapses.  However, what they found with this method was not what they expected. Only a small portion of synapses are active after the mouse brains were electrically stimulated.
 
In a press release from Columbia, one of the study authors, David Sulzer, PhD, professor of neurobiology in Psychiatry, Neurology, and Pharmacology at Columbia University Medical Center (CUMC) said,  “Understanding how we accomplish complex tasks, such as learning and memory, requires us to look at how our brains transmit key signals—called neurotransmitters—across synapses from one neuron to another. Older techniques only revealed what was going on in large groups of synapses. We needed a way to observe the neurotransmitter activity of individual synapses, to help us better understand their intricate behavior.”
 
But how could they get a view at this tiny level? The team worked with another lab at Columbia, run by of Dalibor Sames, PhD, associate professor of chemistry. They developed a novel compound called fluorescent false neurotransmitter 200 (FFN200). It gets added to brain tissue or nerve cells in mice and when it interacts with the synaptic activity it fluoresces and gives a live action picture of brain messaging as it happens.
 
Dopamine, the key neurotransmitter involved in learning, habits and reward seeking, was viewed as it was released and taken back up using a fluorescence microscope.  They expected to see that all the synapses that were electrically stimulated would light up and release dopamine. Only about 20% of them actually did.
 
Researchers hope to do more work on why so many of the synapses didn’t activate. Neurological diseases like Parkinson’s, Alzheimer’s and schizophrenia all involve dopamine disruption to a certain extent so understanding how these patterns function could lead to treatments for those conditions.
 
The research is published in the journal Nature Neuroscience. Check out the video below to see how the imaging worked and hear more about the research.
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
JUL 21, 2021
Technology
Digital App Helps People Make Positive Eating-Habit Changes
JUL 21, 2021
Digital App Helps People Make Positive Eating-Habit Changes
We all have moments where the only thing that can comfort us is food, and a lot of it. However, such behavior can very q ...
JUL 24, 2021
Cannabis Sciences
Causal Link Between Cannabis Use Disorder and Schizophrenia
JUL 24, 2021
Causal Link Between Cannabis Use Disorder and Schizophrenia
A study from Denmark has found that the proportion of schizophrenia cases linked to cannabis use disorder has increased ...
AUG 04, 2021
Clinical & Molecular DX
Fear of Smells Could Help Diagnose Migraines in Kids
AUG 04, 2021
Fear of Smells Could Help Diagnose Migraines in Kids
  A new study suggests the intense dislike of pungent smells and odors could be a diagnostic marker for migraines a ...
JUL 29, 2021
Cell & Molecular Biology
Calcium Seems to Control Blood Flow in the Brain
JUL 29, 2021
Calcium Seems to Control Blood Flow in the Brain
The brain is packed with neurons that are constantly in need of power, but there isn't really anywhere to store energy. ...
SEP 03, 2021
Technology
Bionic Arm Effective at Restoring "Natural" Arm Function in Amputees
SEP 03, 2021
Bionic Arm Effective at Restoring "Natural" Arm Function in Amputees
A research team at the Cleveland Clinic has developed a new mechanical arm that could help people who have received arm ...
SEP 07, 2021
Neuroscience
Researchers Harness the Power of Machine Learning to Facilitate Drug Repurposing
SEP 07, 2021
Researchers Harness the Power of Machine Learning to Facilitate Drug Repurposing
Using machine learning and massive data sets from patients, researchers identify drug and drug combinations that could b ...
Loading Comments...