MAR 01, 2016 05:30 AM PST

Fewer Synapses in the Brain

The vast network of neurons, dendrites, axons and other hardware that is responsible for sending messages all over the body is incredibly complex. Nothing can work without this supercomputer processing and sending signals in exactly the right order and time. It’s an area of neuroscience that researchers are constantly studying. If more can be found out about how it works, then treatments can be found for when it doesn’t work properly.
Synapses are the transmission areas of the brain
One of the recent advances in this area comes from Columbia University scientists who have developed a new optical technique to study how information is transmitted in the brains of mice. With so many signals zipping through the brain, they expected that there were be many connections throughout the brain. These connections are called synapses.  However, what they found with this method was not what they expected. Only a small portion of synapses are active after the mouse brains were electrically stimulated.
 
In a press release from Columbia, one of the study authors, David Sulzer, PhD, professor of neurobiology in Psychiatry, Neurology, and Pharmacology at Columbia University Medical Center (CUMC) said,  “Understanding how we accomplish complex tasks, such as learning and memory, requires us to look at how our brains transmit key signals—called neurotransmitters—across synapses from one neuron to another. Older techniques only revealed what was going on in large groups of synapses. We needed a way to observe the neurotransmitter activity of individual synapses, to help us better understand their intricate behavior.”
 
But how could they get a view at this tiny level? The team worked with another lab at Columbia, run by of Dalibor Sames, PhD, associate professor of chemistry. They developed a novel compound called fluorescent false neurotransmitter 200 (FFN200). It gets added to brain tissue or nerve cells in mice and when it interacts with the synaptic activity it fluoresces and gives a live action picture of brain messaging as it happens.
 
Dopamine, the key neurotransmitter involved in learning, habits and reward seeking, was viewed as it was released and taken back up using a fluorescence microscope.  They expected to see that all the synapses that were electrically stimulated would light up and release dopamine. Only about 20% of them actually did.
 
Researchers hope to do more work on why so many of the synapses didn’t activate. Neurological diseases like Parkinson’s, Alzheimer’s and schizophrenia all involve dopamine disruption to a certain extent so understanding how these patterns function could lead to treatments for those conditions.
 
The research is published in the journal Nature Neuroscience. Check out the video below to see how the imaging worked and hear more about the research.
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 16, 2019
Drug Discovery & Development
OCT 16, 2019
Why Drugs that Work on Mice Don't Work on Humans
Mice are used as the frontline for drug testing for brain disorders. Why? Their brains are supposed to have much of the same functioning as ours. Moreover,...
OCT 16, 2019
Health & Medicine
OCT 16, 2019
On the bright side, optimists may live longer
Do you see the glass half empty, or half full? If your answer is full, you may be in luck: Optimistic people live 11-15% longer than pessimists, according...
OCT 16, 2019
Drug Discovery & Development
OCT 16, 2019
Can FDA Approved Ketamine Drug Spravato Really Treat Depression?
President Trump is allegedly in support of a new drug to combat depression. He even urged the Department of Veterans Affairs to purchase it and “get ...
OCT 16, 2019
Health & Medicine
OCT 16, 2019
The Science of Happiness
What is happiness? People have agonized over this philosophical question for centuries. Scientifically speaking, the answer can be much more straightforward; it is all in your brain. Learn...
OCT 16, 2019
Neuroscience
OCT 16, 2019
Specialized neurons may hinder memories during dream sleep
Rapid eye movement (REM) sleep is a phase when dreams are created. Traditionally, REM has been thought of as a sleep stage important for memory consolidation, or the long-term storage of memo...
OCT 16, 2019
Neuroscience
OCT 16, 2019
No Link Between Testosterone and Empathy
Many earlier studies have suggested a link between testosterone and reduced empathy, the ability to recognize others’ emotions and motivations. Often...
Loading Comments...