NOV 08, 2016 5:35 AM PST

It's Never Too Early For a Head Injury

The research and science behind head injuries and professional football has been well known for years. Chronic Traumatic Encephalopathy (CTE) is common in football players, but since it cannot be diagnosed until after a player has died, treatments for it have been difficult to develop. Many NFL players both current and retired have expressed concerns about the impact of repeated head trauma. CTE can cause depression, can result in anxiety and an inability to manage anger and can eventually lead to dementia and death.
What hasn’t been understood until recently is the risk that players in youth sports, face. New research from Wake Forest University shows that children as young as 12 years old can suffer neurological damage as a result of participating in youth football and that young players don’t necessarily have to incur a concussion for the damage to happen.
 
In the United States there are about 3 million young people participating in youth football. The Wake Forest study, published online in the journal Radiology, showed that even head impacts that do not result in a concussion, can cause damage to young brains. Even just a single season of youth football has been shown to cause definitive brain changes in players who never suffered an actual concussion.
 
The study's lead author, Christopher T. Whitlow, M.D., Ph.D., M.H.A., associate professor and chief of neuroradiology at Wake Forest School of Medicine in Winston-Salem, N.C. stated in a press release, "Most investigators believe that concussions are bad for the brain, but what about the hundreds of head impacts during a season of football that don't lead to a clinically diagnosed concussion? We wanted to see if cumulative sub-concussive head impacts have any effects on the developing brain."
 
In order to get information on these sub-concussive impacts the research team studied 25 male youth football players between the ages of 8 and 13. The data for head impacts was collected using the Head Impact Telemetry System (HITs), which is the gold standard of head impact studies and has been used at the high school and collegiate level to study the frequency, severity and cognitive outcomes of helmet impacts in American Football.  The data was analyzed to sort out the risk of the cumulative exposure of one season of play.  Study volunteers underwent pre- and post-season evaluation with multimodal neuroimaging, including diffusion tensor imaging (DTI) of the brain. While traditional MRIs can show some brain changes, DTI is an advanced MRI technique, which identifies changes in brain white matter at a microscopic level. In addition, any game that included a study participant was videotaped and reviewed in order to collate data on reported impacts and what actually happened on the field
 
White matter in the brain is evaluated by looking at how water molecules move throughout the brain, a measurement called fractional anisotropy. It’s an indicator of brain health because the more efficiently water moves in the brain, the healthier the tissue. DTI MRI scans can pick up this movement. The results of the scans conducted on the Wake Forest Study volunteers showed a significant relationship between head impacts and decreased FA in specific white matter tracts and tract terminals, where white and gray matters meet. Dr. Whitlow explained the finding stating, "We found that these young players who experienced more cumulative head impact exposure had more changes in brain white matter, specifically decreased FA, in specific parts of the brain. These decreases in FA caught our attention, because similar changes in FA have been reported in the setting of mild TBI."

These results are important because none of the players that had these brain changes had suffered a concussion. The research is the first to show that even without an actual diagnosis of concussion, brain changes still happen and they can impact the brain health of these very young players. The video below explains more about this study and what needs to happen in youth sports to protect the most vulnerable players.
 

Sources: Radiology Wake Forest University, NBC News
 
About the Author
English
I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
JUN 25, 2022
Health & Medicine
New Perspective on the Link Between Social Media and Unhappiness
JUN 25, 2022
New Perspective on the Link Between Social Media and Unhappiness
The paradox that is social media. Social media gives us constant opportunities to connect with other people yet can leav ...
JUN 26, 2022
Drug Discovery & Development
Acupuncture Alleviates Chronic Tension Headaches in Randomized Controlled Trial
JUN 26, 2022
Acupuncture Alleviates Chronic Tension Headaches in Randomized Controlled Trial
Results from a randomized controlled trial suggest that acupuncture may relieve symptoms of chronic tension-type headach ...
JUL 01, 2022
Drug Discovery & Development
Paper-thin Device Treats Pain and then Dissolves in Body
JUL 01, 2022
Paper-thin Device Treats Pain and then Dissolves in Body
Researchers have developed a biocompatible, implantable device that relieves pain and harmlessly dissolves when no longe ...
JUL 03, 2022
Neuroscience
Loss of Smell Reduces Enjoyment When Eating and Cooking
JUL 03, 2022
Loss of Smell Reduces Enjoyment When Eating and Cooking
Olfactory loss- or loss of smell- reduces enjoyment in eating and cooking. The corresponding study was published in Food ...
JUL 16, 2022
Drug Discovery & Development
Whole Blood Exchange May Reduce Amyloid Plaques in Alzheimer's
JUL 16, 2022
Whole Blood Exchange May Reduce Amyloid Plaques in Alzheimer's
Whole blood exchange reduces the formation of amyloid beta plaques in mouse models of Alzheimer's disease. The corre ...
JUL 19, 2022
Drug Discovery & Development
Experimental Cancer Drug Regrows Nerves in Spinal Cord Injury
JUL 19, 2022
Experimental Cancer Drug Regrows Nerves in Spinal Cord Injury
An experimental cancer drug can regenerate damaged nerves following spinal trauma in mice and rats. The corresponding re ...
Loading Comments...