JAN 31, 2017 6:06 AM PST

Mapping Serotonin Dynamics in the Brain

Serotonin is pretty well known as far as brain chemicals go. It’s a neurotransmitter which means it’s part of the communication process that happens between neurons in the brain. What many might not know is that 80-90% of the serotonin in the body is produced in the intestinal tract. The rest is produced in the brain. What is used in the brain must be produced there. There are volumes of research that show that serotonin is important for mood balance and feelings of well-being. This is why many psychiatric medications to treat depression are designed to interact with serotonin. SSRI medications block the neurotransmitter from being reabsorbed in the brain, so more is available to as a mood stabilizer. One of the challenges to monitoring and trying to regulate serotonin has been that the mechanics of it were not easily seen by imaging or other testing.

New research from MIT might be the first step in changing that and hopefully learning more about the dynamics of the serotonin supply in the brain. The work recently completed by the MIT team has shown for the first time, in 3D no less, a real time map of serotonin making its way around the brain. Aviad Hai, a postdoc in the Department of Biological Engineering and first author of the paper describing the technique stated,  “Until now, it was not possible to look at how neurotransmitters are transported into cells across large regions of the brain. It’s the first time you can see the inhibitors of serotonin reuptake, like antidepressants, working in different parts of the brain, and you can use this information to analyze all sorts of antidepressant drugs, discover new ones, and see how those drugs affect the serotonin system across the brain.”

Before this research, the only way to really know how serotonin was moving through brain tissue was a by literally poking a probe into the brain and taking tiny chemical samples from the tissue. Hardly something most patients want to go through. The method the MIT researchers came up involved creating a protein that would chemically bond to serotonin as it traveled through the brain. Using this as a sensor, the team was able to map where it went. Once serotonin was reabsorbed, the sensing protein would detach. This protein would also emit a signal and when injected into the brain, along with serotonin. That signal could be picked up and imaged by a functional MRI scan. The signal only fired when the protein was detached from the serotonin. The MRI images contained pixels, which were then converted to voxels (which are pixels in 3D) using a mathematical model. Over 1,000 voxels were detected in the work, and the model was used to create a 3D map of the where, when and how the serotonin was moving and being absorbed.

The team used this method to successfully measure the effect that would be expected when the SSRI fluoxetine (Prozac) was used. Their mapping and math was successful in illustrating the decrease in serotonin reuptake that is known to happen when Prozac is used to treat depression. They also unexpectedly discovered that a dopamine transport reuptake inhibitor used in one of the experiments also reduced serotonin reuptake, further validating the suspected connection between the role of both dopamine and serotonin in mental illness.

While drugs like Prozac only target serotonin, Hai explained that targeting more than one neurotransmitter might be a better way to treat depression. “It may not be sufficient to just block serotonin reuptake, because there’s another system — dopamine — that plays a role in serotonin transport as well. It’s almost proof that when you use antidepressants that … target both systems, it could be more effective,” he said. The video talks more about this significant development in mapping brain activity, take a look.

Sources: MIT, MDJunction.com, Neuron, UPI

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
APR 19, 2020
Neuroscience
APR 19, 2020
Does Listening to Background Music Reduce Creativity?
Although music has long been thought to enhance creativity, new research says that it may actually have the opposite eff ...
APR 23, 2020
Cannabis Sciences
APR 23, 2020
No Difference Between Indica and Sativa Cannabis Strains
Cannabis growers and sellers have defined different strains of cannabis as ‘indica’ or ‘sativa’ ...
APR 27, 2020
Cell & Molecular Biology
APR 27, 2020
Cold Foods Don't Taste as Good, Even to Flies
The deliciousness of a food appeal is about a lot more than just taste.
JUN 18, 2020
Neuroscience
JUN 18, 2020
'Love Hormone' Oxytocin Also Promotes Aggression
Many know oxytocin as the ‘love hormone.’ Known to produce feelings of attachment and enhance social bonds, ...
JUN 20, 2020
Immunology
JUN 20, 2020
A Cell's 450 Million Year Journey
Microglia make up just a fraction of all the cells in the brain, but play a vital role in removing pathogens or damaged ...
JUL 02, 2020
Drug Discovery & Development
JUL 02, 2020
Common Asthma Drug Could Treat Alzheimer's
Researchers from Lancaster University, England, have found that Salbutamol, a medication commonly used to treat asthma, ...
Loading Comments...