APR 23, 2017 8:14 AM PDT

The Curious Case of Why Asteroid P/2013 R3 Shattered Into Many Pieces

WRITTEN BY: Anthony Bouchard

Astronomers have been studying the mysterious breakup of asteroid P/2013 R3 for over three years, and while the reasoning behind why it appeared to shatter from out of nowhere eluded experts for so long, we now think we know what happened.

P/2013 R3 shattered into more than 10 pieces in this snapshot from Hubble Space Telescope.

Image Credit: NASA, ESA, and D. Jewitt (University of California, Los Angeles)

A study accepted for publication in the Astrophysical Journal offers a possible explanation for why P/2013 R3 shattered into more than 10 pieces before the eyes of the Hubble Space Telescope just years ago.

As noted in the study, the fragments were drifting apart from one another at a very low rate of speed, about 0.9 MPH, which virtually eliminates the idea that some kind of collision dealt a blow hard enough to shatter the space rock.

Related: Could asteroids have brought water to Earth?

Instead, experts turned their attention to a phenomenon known as the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. This is basically explained as when a source of heat causes an unstable object to start to spin, gradually gaining speed over time.

An illustration of how the YORP effect acted on asteroid P/2013 R3.

Image Credit: NASA, ESA, D. Jewitt (UCLA), and A. Feild (STScI)

In our Solar System, gravity helps keep everything glued together. On the other hand, everything is in free-spin and anything forced to spin by the YORP effect doesn’t meet any resistance. That said, as an unstable object spins, the spinning can only get faster as the source of heat continues to act on it.

The main source of heat in our Solar System is our Sun, and because asteroids are typically small and irregularly-shaped objects orbiting the Sun, they can be considered relatively easy targets for trapping pockets of heat from our host star.

In the case of P/2013 R3, which had an unstable structure to begin with, spinning too quickly may have eventually caused the loosely-packed, rubble-like internal structure of the asteroid to fling apart in all directions by means of centrifugal force.

“This indicates that the sun may play a large role in disintegrating these small solar system bodies, by putting pressure on them via sunlight,” study co-author Jessica Agarwal said.

Related: In terms of asteroid collision, size really does matter

When we think of space rocks, we probably think of solid objects like the rocks we’d find on the ground here on Earth, but not everything in space is as solidly-packed as what we find on the ground. Sometimes larger objects clump together through gravity and aren’t completely merged together.

This was likely the case of P/2013 R3, and the slow drift-away speed from the shattered asteroid bits seems to support the hypothesis that the YORP effect was the cause for the event.

While we don’t know for sure that this was the exact cause just yet, it’s a great starting point to begin our research. Nevertheless, you can observe the breakup of the asteroid and judge for yourself from the following HubbleESA video on YouTube:

Source: Space.com

About the Author
  • Fascinated by scientific discoveries and media, Anthony found his way here at LabRoots, where he would be able to dabble in the two. Anthony is a technology junkie that has vast experience in computer systems and automobile mechanics, as opposite as those sound.
You May Also Like
JUN 29, 2020
Space & Astronomy
Hubble Captures the 'Flapping' of Cosmic 'Wings'
JUN 29, 2020
Hubble Captures the 'Flapping' of Cosmic 'Wings'
The Hubble Space Telescope continues to send us incredible images of space. It has recently captured an image involving ...
JUL 05, 2020
Space & Astronomy
Astronomers Spot Exposed Planetary Core for First Time
JUL 05, 2020
Astronomers Spot Exposed Planetary Core for First Time
For the first time, astronomers have spotted a planet with an exposed core. Known as TOI-849b, the finding could help us ...
AUG 14, 2020
Chemistry & Physics
Cosmic Rays Might Have Played a Role in Shaping Our Genetic Materials
AUG 14, 2020
Cosmic Rays Might Have Played a Role in Shaping Our Genetic Materials
DNA, whose signature double helix structure scored Watson and Crick (and Frankland presumably according to many) a Nobel ...
OCT 08, 2020
Chemistry & Physics
How much radiation do super flares emit?
OCT 08, 2020
How much radiation do super flares emit?
Research from the University of North Carolina at Chapel Hill published in Astrophysical Journal contemplates the amount ...
OCT 09, 2020
Space & Astronomy
Why the Sun's Atmosphere is Hotter than its Surface
OCT 09, 2020
Why the Sun's Atmosphere is Hotter than its Surface
Researchers have found evidence of nanojets (bright, thin lights) in the solar atmosphere, also known as the corona. The ...
NOV 07, 2020
Space & Astronomy
Scientists Discover Planet with Atmosphere of Vaporized Rock
NOV 07, 2020
Scientists Discover Planet with Atmosphere of Vaporized Rock
Researchers have identified an exoplanet that appears to have an atmosphere composed of vaporized rock and oceans runnin ...
Loading Comments...