SEP 09, 2018 1:53 AM PDT

Synthetic DNA Technology for Therapeutic Molecule Delivery

WRITTEN BY: Nouran Amin

Image Source: Greater Kashmir

Synthetic DNA technology was used to engineer a novel eCD4-Ig anti-HIV agent while enhancing its potency ‘in vivo’ which was done by researchers at The Wistar Institute. Such technology has provided a simple strategy for building complex therapeutics for infectious agents as well as for diverse implications in drug delivery. The development was published online in the journal EBio Medicine.

The need for delivering complex therapeutic molecules has been a critical challenging. One such challenge is the development of a safe and effective HIV vaccine. Researchers are seeking to address these issues by exploring ‘passive immunization of laboratory-produced immunoadhesins’ in addition to traditional gene therapy methods for delivery of complex therapeutic molecules. "These complex therapeutics are difficult to deliver through traditional strategies and achieving full activity in vivo using DNA technology is also challenging," said lead researcher David B. Weiner, Ph.D., executive vice president, director of the Vaccine & Immunotherapy Center and W.W. Smith Charitable Trust Professor in Cancer Research at The Wistar Institute. "We demonstrated that a combination of plasmids can be designed to produce a novel protein as well as its modifying enzyme, allowing them to collocate with each other and create a highly functional immunoadhesin."

Image Source: Medgadget

The technology consists of electroporation of synthetic DNA (DNA/EP) that involves the application of small, controlled directional electric currents placed inside the skin or muscle that facilitates the optimal uptake of DNA molecules as well as the local production of the DNA-encoded proteins. The technology then was able to achieve robust and long-term in vivo expression. In a mouse model, the single injection of the synthetic DNA formula has produced a functional eCD4-Ig for several months. Previous research has shown that a particular modification of the immunoadhesins, called sulfation, favored their binding to the HIV envelope. Thus, co-expression of an enzyme called ‘TPST2’ was able to occur and was crucial to increase the efficacy of the anti-HIV potency of the produced eCD4-Ig. "This is the first report on the use of synthetic DNA to encode an enzyme that can effectively carry out its activity and modulate biological functions of a target protein with high efficiency in vivo," said Weiner.

The research has advanced the field of HIV immunization and opening the doors for further applications for in vivo delivery of biologics.

Source: The Wistar Institute

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
DEC 06, 2019
Health & Medicine
DEC 06, 2019
Cell Phone Use Related Injuries on the Rise
Are you reading this on your cell phone? Check your posture and your surroundings! A study published yesterday in Jama Otolaryngology-Head & Neck Surge...
DEC 15, 2019
Space & Astronomy
DEC 15, 2019
Boeing's Starliner Capsule 'Ready' for First Test Flight
NASA is enthusiastic about bringing crewed space launches back to American soil very soon, and with the help of its Commercial Crew program, at least two s...
JAN 13, 2020
Chemistry & Physics
JAN 13, 2020
Magnetic Field-guided Tethered-probe Can Navigate Complex Vascular Networks
Deep and complex vasculatures such as carotid arteries represent a challenge for diagnosis and treatment because they are buried underneath layers of other...
JAN 16, 2020
Neuroscience
JAN 16, 2020
New Wearable that Helps the Body Adapt to Stress
Physicians and neuroscientists at the University of Pittsburgh have developed Apollo- a wearable they claim helps the body adapt to stress, improve sleep q...
FEB 16, 2020
Space & Astronomy
FEB 16, 2020
ISS Poised to Receive Fresh Supplies by Tuesday
Life on the International Space Station isn’t quite as convenient as it is for the rest of us here on Earth. With no convenient restaurants or conven...
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
New Antibiotics Found Using AI Technology
Using AI, researchers at MIT have found a powerful new antibiotic capable of killing some of the most dangerous drug-resistant bacteria known to man. ...
Loading Comments...