MAR 24, 2020 11:00 AM PDT

3-D Organoid Models for Differentiation of PSC-Derived Dopaminergic Neurons

Speaker
  • Sr. Staff Scientist, Cell Biology 3D Models, Thermo Fisher Scientific
    Biography
      Richard Josephson earned his Ph.D. in Cell and Molecular Biology at the Massachusetts Institute of Technology. He conducted post-doctoral research on gene regulation by stem cells of the central nervous system under Ron McKay in the National Institute of Neurological Disorders and Stroke at NIH. He was subsequently a research scientist in the Stem Cell Center at the American Type Culture Collection, where he was lead author of several papers and reviews on authentication and standards for human embryonic stem cells and stem cell therapies. Later, as a Senior Scientist with MTI-GlobalStem, he developed products and methods for neurobiology including large-scale production and long-term culture of rodent primary neurons and human iPSC-derived neurons. At Thermo Fisher Scientific, Dr. Josephson is involved in the development and analysis of new 3-D cell culture models including midbrain organoids to study Parkinson Disease and other neurological disorders.

    Abstract
    DATE:   March 24, 2020
    TIME:   11:00am PT, 2:00pm ET
     
     
    While in vitro cell culture has long been used to study neurological diseases, researchers have come to the realization that 2-D systems do not accurately model the complex cell interactions and self-organizing architecture of the brain. Neuroscientists are increasingly turning to 3-D organoid systems that include a greater diversity of cell types and more closely mimic brain development in vivo.
     
    We have generated organoids rich in midbrain dopaminergic (DA) neurons, the specific cells which degenerate in Parkinson's Disease (PD). Starting with suspension culture of pluripotent stem cells, we passage into low-attachment 96-well U-bottom plates to begin differentiation of uniformly-sized spheroids. A low concentration of extracellular matrix (ECM) molecules are added during neural specification to enhance the organoid architecture, while improving throughput relative to ECM encapsulation methods. The ECM speeds dopaminergic maturation as indicated by Neuromelanin production. Multielectrode array (MEA) recording of replated spheroids shows spontaneous burst activity in as little as five weeks, followed by gradual refinement toward coordinated rhythmic bursting. To model Parkinson's Disease in vitro we introduced the PD-related SNCA A30P mutation into a Cas9-expressing iPSC line. We have generated midbrain organoids from these lines and are evaluating the sensitivity of mutant and wildtype DA neurons to induced oxidative stress. The specific effects on DA neurons are assayed by antibody detection of active caspase in wholemount or cryosectioned organoids and evaluated via High-Content Analysis (HCA).
     
    In this work we have produced midbrain organoids with functional DA neurons while reducing our time and effort. In combination with more accessible and higher-throughput 3-D assays, we hope this may contribute toward a more illuminating in vitro PD model.
     
    Learning Objectives:
    • Discover the advantages of 3-D culture for directed neuronal differentiation of PSC
    • Learn how to modify early specification steps to expedite neuronal maturation
    • Understand the constraints that must be balanaced to adapt 2-D differentiation protocols to 3-D
     
     
     
    Webinars will be available for unlimited on-demand viewing after live event.
     
    LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.
     
     

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    Loading Comments...
    Show Resources
    Attendees
    • See more