SEP 26, 2018 12:00 PM PDT

3D Cell Cultures and Tissue Clearing: A High Content Confocal Platform for the Complete 3D Characterization of Advanced Cell Models

Presented at: Cell Biology 2018
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Chief Executive Officer - Visikol Inc.
    Biography
      Dr. Michael Johnson is a 2017 Forbes 30 Under 30 honoree and the CEO of Visikol Inc., which is a drug discovery research organization focused on advanced in vitro models, 3D tissue imaging, and digital pathology. Michael holds an undergraduate degree in Biology from Muhlenberg College and a PhD from Rutgers University. Michael's research background has focused on a number of projects, from remote sensing research with NASA, to building light sheet microscopes for 3D tissue imaging, and producing algal-derived biofuels. Prior to leading Visikol, Michael worked on several biotech-based entrepreneurial pursuits and is very passionate about translating cutting edge research into life-changing commercial technologies.

    Abstract

    With the advent of cost-effective culturing approaches, 3D cell culture models (3D-CCMs) have been rapidly adopted for drug discovery since they provide a more physiologically relevant micro-environment; showing improved predictive utility for assessing drug efficacy and/or toxicity when compared to traditional 2D monolayer models. High-content analysis/screening (HCA/HCS) also plays a major role in drug screening, but one of the unique challenges of evaluating 3D-CCMs (i.e. spheroids, organoids, micro-tissues, organs-on-a-chip) is their opacity and thickness that limit optical imaging to only the outermost layers (~20=30 microns). Since the outermost cells are exposed to different physiological test conditions (oxygen, nutrients, media exchange, drug dosing), current image-based approaches induce a bias in the results since the outer layer of cells are found in a significantly different micro-environment than the interior. This shortcoming is particularly problematic when ascertaining the relative effectiveness of current therapeutic agents (e.g. immunoglobulin-based therapeutics, anti-proliferatives) since their effects are likely to be localized or concentrated to the surface while their efficacy within the interior are obfuscated and not fully resolved. Visikol™ has shown that through the addition of high content confocal microscopy with the Thermo Scientific™ CellInsight™ CX7 LZR High-Content Analysis Platform and the Visikol® HISTO-M™ reagent that the entire population of cells within 3D-CCMs can be characterized.

    Learning objectives:

    1. To understand the limitations of 3D cell culture models and considerations for using them in assays

    2. To understand the challenges associated with imaging 3D cell culture models and designing HCS assays


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources
    Attendees
    • See more