MENU

Addressing the scalability of human iPSC-derived neurons for HTS implementation and phenotypic screening

Speaker
  • Postdoctoral Research Associate, Lead ID, The Scripps Research Institute
    Biography
      Banu Priya Sridharan, PhD, is a Postdoctoral Research Associate at the Scripps Research Institute Molecular Screening Center in the department of Molecular Medicine at Scripps in Florida. After a brief stint in MIT-Harvard HST as an undergraduate research assistant, she trained as a tissue engineer in Lawrence, Kansas where she obtained her Ph.D. in 2015. She moved to Medimmune to do a short-term industrial fellowship. She began at Scripps Florida in 2016 to advance her expertise on developing stem-cell based tissue models but now in the context of HTS. Dr. Sridharan pursued her passion for employing cellular models for phenotypic screening and is deeply involved in iPSC-based neuronal differentiation protocols, genome editing for disease modeling and relevant drug screening. Since 2011, she has published numerous peer reviewed articles and conference posters and podium talks and her key expertise includes stem cell differentiation, phenotypic assay development, high throughput screening and high content analysis.

    Abstract

    Traditional high throughput screening (HTS) assays for neuronal targets employ non-human primary neuronal cells due to the scale necessary for HTS. Isolation of mouse primary neurons can be unreliable and economically demanding. The discovery of new drugs for neuropsychiatric disorders has further been hampered by lack of access to disease-relevant human primary neurons and appropriate disease models. By using human induced pluripotent stem cell (hiPSC) technology, we can address some of the obstacles which affords the generation of human neurons through (1) embryoid body (EB) formation, (2) cultivation on stromal feeder cells, and, (3) employing lineage specific differentiation factors. Methods exist to reproducibly differentiate hiPSCs into functional cortical induced neurons (iN) in less than two weeks but, they have never been taken to the HTS scale and have been slow and somewhat variable. We have successfully recapitulated the aforementioned technique and leveraged the CRISPR technology to define the path to a plate-compatible format amenable for large-scale HTS implementation. The resulting iN cells exhibit appropriate genetic and fluorescent markers that give confidence of bonafide neuronal differentiation. Imminently, we intent to test the preliminary iN cells for their ability to post-mitotically increase or decrease neurite outgrowth following treatment with LOPAC test compounds via staining and high content analysis. Ultimately, we will determine reliability and reproducibility over time with industrial scale robotics. Furthermore, we also intend to leverage the CRISPR technology to create a library of disease-relevant-phenotypes from hiPSC-derived cellular models that will provide more opportunities for all biologists to study epigenetic mechanisms and scale-up screening initiatives with Scripps Research Institute Molecular Screening Center (SRIMSC).


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    APR 01, 2021 8:00 AM PDT
    C.E. CREDITS
    APR 01, 2021 8:00 AM PDT
    Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
    JAN 21, 2021 8:00 AM PST
    JAN 21, 2021 8:00 AM PST
    Date: January 21, 2021 Time: 8:00am (PST), 11:00am (EST) Today, critical reagent characterization is a key component in the overall workflow to establish robust ligand binding assays (e.g.,...

    Addressing the scalability of human iPSC-derived neurons for HTS implementation and phenotypic screening


    Specialty

    Drug Discovery

    Animal Diets

    Crispr

    Chemistry

    Research

    Cancer Therapeutics

    Biology

    Molecular Biology

    Biochemistry

    Gene Expression

    Animal Models

    Crispr-Cas9

    Clinical Chemistry

    Cell Biology

    Animal Research

    Geography

    North America100%

    Registration Source

    Website Visitors100%

    Job Title

    Research Scientist100%

    Organization

    Research Institute100%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more