Beyond Automated iPSC reprogramming: applications for a fully automated cell culture system for pluripotent stem cell research

Speakers
  • Chief Technology Scientist, Centre for Brain development and Repair, Instem, Bangalore
    Biography
      Dr. Paull is Vice President, Automation Systems and Stem Cell Biology at The NYSCF Research Institute. Daniel oversees the day-to-day operation of The NYSCF Global Stem Cell Array in both the production of induced pluripotent stem cells and development of novel tools using the robotic platform including such areas as gene editing and differentiation. He also oversees a number of collaborative projects aimed at developing research across a range of disease areas. He received his PhD from University College London, England and followed this with post-doctoral work at the New York Stem Cell Foundation where he helped develop novel approaches for the treatment of mitochondrial disease as well as furthered research into somatic cell nuclear transfer.

    Abstract:

    The use of pluripotent stem cells is dramatically altering the R&D landscape, providing new insights into both the basic biology of disease progression and novel cell types for pharmaceutical drug screening.  Additionally, pluripotent stem cells are already in clinical use for a number of disease indications. However, one limitation of the work to date is that in-vitro studies have largely focused on highly penetrant point mutations known to directly lead to a disease phenotype. While useful, this approach may not always be applicable to idiopathic versions of the same disease. For the majority of diseases, underwritten by common causal variants, modeling using only a limited number of cell lines is insufficient. To overcome these issues, we have developed a fully automated platform which allows high throughput cell biology to be accomplished: from reprogramming of hundreds of cell line in parallel to high throughput differentiations, large scale experiments can now be performed to interrogate these diseases. Here we report on progress in adapting the NYSCF Global Stem Cell Array technology to encompass high throughput genome editing as well as large-scale differentiations and screens. We will present a number of case studies highlighting the continued development of this automated system for stem cell biology.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    Loading Comments...
    Show Resources