FEB 21, 2018 1:30 PM PST

Can CADD Drive GPCR Drug Design? Rapid Estimation of Relative Binding Affinities Based on Pre-computed Ensembles

Presented at: Drug Discovery 2018
Speaker
  • Grollman-Glick Professor of Pharmaceutical Sciences, Director, Computer-Aided Drug Design Center, University of Maryland School of Pharmacy
    BIOGRAPHY

Abstract

Rapid, accurate estimation of relative ligand affinities offers the potential to allow computational methods to direct drug design and development.  Towards this goal we have developed two methods based on pre-computed ensembles; Site Identification by Ligand Competitive Saturation (SILCS) and Single-Step Free Energy Perturbation (SSFEP).  SILCS is based on computational functional group affinity mapping (FragMaps) of proteins using oscillating μex Grand Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) simulations that take into account contributions from protein desolvation, functional group desolvation, protein flexibility as well as functional group-protein interactions.  The method can be applied to a range of macromolecules including those with deep or full inaccessible binding pockets such GPCRs and nuclear receptors. Grid Free Energy (GFE) FragMaps obtained from the GCMC/MD simulations may be used both qualitatively and quantitatively to direct ligand design.  In SSFEP a lead compound-protein complex is subjected to MD simulations from which an ensemble of ligand-protein conformations is obtained.  Similar calculations are done on the ligand in solution.  Free energy differences associated with small chemical modifications of the lead compound may then be evaluated using the free energy perturbation formulation in the context of single step perturbations. Both SILCS and SSFEP allow for rapid scoring of 1000s of transformations on a daily time frame offering the potential to identify synthetically accessible ligands thereby facilitating decisions concerning compounds for synthesis and testing. An overview of the SSFEP and SILCS methodologies will be presented along with application of the methods in the context of lead compound identification and optimization in the context of GPCRs. 


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
MAR 30, 2022 6:00 AM PDT
MAR 30, 2022 6:00 AM PDT
Targeted NGS has been instrumental in helping the healthcare community deliver on the promise of precision medicine. The Ion Torrent Genexus Integrated Sequencer has enabled targeted genomic...
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
FEB 21, 2018 1:30 PM PST

Can CADD Drive GPCR Drug Design? Rapid Estimation of Relative Binding Affinities Based on Pre-computed Ensembles

Presented at: Drug Discovery 2018


Show Resources
Loading Comments...
Show Resources
Attendees