FEB 21, 2018 1:30 PM PST

Can CADD Drive GPCR Drug Design? Rapid Estimation of Relative Binding Affinities Based on Pre-computed Ensembles

Presented at: Drug Discovery 2018
Speaker
  • Grollman-Glick Professor of Pharmaceutical Sciences, Director, Computer-Aided Drug Design Center, University of Maryland School of Pharmacy
    BIOGRAPHY

Abstract

Rapid, accurate estimation of relative ligand affinities offers the potential to allow computational methods to direct drug design and development.  Towards this goal we have developed two methods based on pre-computed ensembles; Site Identification by Ligand Competitive Saturation (SILCS) and Single-Step Free Energy Perturbation (SSFEP).  SILCS is based on computational functional group affinity mapping (FragMaps) of proteins using oscillating μex Grand Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) simulations that take into account contributions from protein desolvation, functional group desolvation, protein flexibility as well as functional group-protein interactions.  The method can be applied to a range of macromolecules including those with deep or full inaccessible binding pockets such GPCRs and nuclear receptors. Grid Free Energy (GFE) FragMaps obtained from the GCMC/MD simulations may be used both qualitatively and quantitatively to direct ligand design.  In SSFEP a lead compound-protein complex is subjected to MD simulations from which an ensemble of ligand-protein conformations is obtained.  Similar calculations are done on the ligand in solution.  Free energy differences associated with small chemical modifications of the lead compound may then be evaluated using the free energy perturbation formulation in the context of single step perturbations. Both SILCS and SSFEP allow for rapid scoring of 1000s of transformations on a daily time frame offering the potential to identify synthetically accessible ligands thereby facilitating decisions concerning compounds for synthesis and testing. An overview of the SSFEP and SILCS methodologies will be presented along with application of the methods in the context of lead compound identification and optimization in the context of GPCRs. 


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
OCT 13, 2021 7:00 AM PDT
C.E. CREDITS
OCT 13, 2021 7:00 AM PDT
Date: October 13, 2021 Time: 7:00am (PDT), 10:00am (EDT) Western blot analysis is a method widely used in the lab today because of its versatility in detecting and measuring specific target...
OCT 12, 2021 9:00 AM PDT
C.E. CREDITS
OCT 12, 2021 9:00 AM PDT
Date: October 12, 2021 Time: 9:00am (PDT), 12:00pm (EDT) SCIEX’s next-generation Biologics Explorer software is an innovative platform for the comprehensive and deep characterization o...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
OCT 14, 2021 9:00 AM PDT
C.E. CREDITS
OCT 14, 2021 9:00 AM PDT
Date: October 14, 2021 Time: 9:00am (PDT), 12:00pm (EDT), 5:00pm GMT Western blot analysis is a method widely used in the lab today because of its versatility in detecting and measuring spe...
AUG 24, 2021 11:00 AM PDT
C.E. CREDITS
AUG 24, 2021 11:00 AM PDT
Date: August 24, 2021 Time: 11:00am (PDT), 1:00pm (EDT) Electron-based dissociation mechanisms have shown great promise for advanced characterization of biomolecules. However, routine adopti...
FEB 21, 2018 1:30 PM PST

Can CADD Drive GPCR Drug Design? Rapid Estimation of Relative Binding Affinities Based on Pre-computed Ensembles

Presented at: Drug Discovery 2018

No demographic data is available yet for this event.


Show Resources
Loading Comments...
Show Resources