MAY 08, 2019 9:00 AM PDT

Development of an Arrayed Whole Human Genome KO Library for Functional Genomics Screening, Using an Optimized Multi-sgRNA Approach

Sponsored by: Synthego
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Head of Science, Synthego
    Biography
      Kevin Holden is Head of Science at Synthego in Redwood City, California. He is part of a team responsible for integrating synthetic biology workflows, such as CRISPR genome engineering, into novel automation platforms and oversees academic and industrial collaborations with key opinion leaders in the CRISPR community. He has over 10 years of biotechnology experience that includes collaborative research in synthetic biology and genome engineering. Kevin earned his PhD in Microbiology from University of California, Davis. He is originally from the UK and immigrated to the US in his youth.

    Abstract

    Arrayed gene knockout (KO) libraries represent a valuable resource for performing functional genomics screening. Current generation arrayed KO libraries for the whole human genome rely on either single CRISPR sgRNAs to generate frameshift-causing indels or a mixture of several sgRNAs pooled together using only top ranked on-target predicted sgRNAs with no geographical consideration. However, there are considerable drawbacks to both of these approaches, since many indels do not cause frameshifts and current on-target prediction is unreliable. We designed a next generation library for generating gene KOs in an arrayed library format by multiplexing sgRNAs to localized, early exon regions of genes. We found that these multiplexed sgRNAs work cooperatively to generate larger sequence deletions thank indels at an efficient rate, allowing researchers to de-risk an arrayed approach to CRISPR library screening and assuring that each well within a library can produce a strong KO phenotype. 

    Learning Objectives: 

    1. Understand how optimizing sgRNA design and CRISPR protocols can yield the most effective methods for generating gene knockouts.
    2. Learn how these methods have been adapted to generating next-generation whole human genome gene knockout libraries, that can be purposed for functional genomics screening. 


    Show Resources
    You May Also Like
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    Loading Comments...
    Show Resources