MAY 04, 2016 12:00 PM PDT

Development of a Mammalian Recombinant Protein Production Suite

Speakers
  • Principal Scientist, CSL Limited
    Biography
      Dr Catherine Owczarek is the Director of the Recombinant Protein Expression Group (CSL Limited) located at the Bio21 Institute in Melbourne, Australia. After gaining a PhD at the John Curtin School of Medical Research, Canberra, Catherine completed her post-doctoral studies at the Sir William Dunn School of Pathology in Oxford, the Walter and Eliza Hall Institute in Melbourne and then was a Senior Research Fellow at the Monash Institute of Medical Research in Melbourne. Since joining CSL Limited in 2004 Catherine has led the CSL Research Group's efforts in the successful development of a program to produce mammalian-derived recombinant proteins using disposable cell culture technology. She is involved in a range of CSL's early phase drug discovery campaigns where there is a high demand for recombinant proteins.

    Abstract:
    Complex recombinant protein biologics, such as monoclonal antibodies and coagulation factors, are key components of today’s biopharmaceutical industry. There are many effective paths for generating recombinant proteins in mammalian cells.  Stable cell lines made in Chinese Hamster Ovary (CHO) cells are the workhorse for production of biopharmaceuticals due to their relative ease of use and long history of regulatory acceptance.  However, in development and laboratory settings, where large numbers of proteins are generated for pre-clinical studies, transient gene expression using the FS293F™, Expi293F™ and ExpiCHO™ systems is an efficient, rapid and cost-effective alternative to developing stable CHO cell lines. Transient gene expression technology has allowed us to rapidly screen, identify and characterise multiple novel protein-based human therapeutic drug candidates. Notably, we have observed that the choice of expression system has a great influence on not only the quantity but also the quality of the produced recombinant protein.  The Freestyle 293™, Expi293™ and ExpiCHO™ cell lines are excellent hosts for robust secretion of mammalian proteins, however the cellular machinery for appropriate post-translational modifications for particular proteins is not always optimal. We are currently developing tools that are expected to enable the generation of proteins with appropriate post-translational modifications and hence the desired biological activity and pharmacokinetics.
     

    Show Resources
    You May Also Like
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    Loading Comments...
    Show Resources