DATE: May 24, 2018
TIME: 09:30AM PDT
The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines, grown on static flat surfaces – generally referred to known as traditional two-dimensional cultures (2D). When considering drug discovery and development to discern possible treatment options, ideally one should to implement an experimental model that best mimics the in vivo environment of man. Organs boast a unique three-dimensional cellular architecture, with cell-cell and cell-matrix interactions, creating a complex communication network through biochemical and mechanical signals. More recently, proof of concept that three-dimensional cell culturing (3D) is revolutionizing the evaluation of lead compounds has been shown. However, important and distinct differences exist between 2D and 3D cell culturing, as well as the in vivo situation. These critical differences culminate in discrepancies in treatment responses between these systems, suggesting that 3D models may be able to provide a more accurate representation of how a specific organ or cancer would react, compared to 2D. Various types of 3D cell culture model systems are currently available and being explored. It is important to note that the choice of system depends on the hypothesis, study design or target organ, and not one system is superior to the other and each offers various advantages and disadvantages. The dynamic micro-gravity spheroid 3D system, exhibits the ability to overcome many of the shortcomings of traditional 2D cell cultures. In implementing this system in our laboratories, we aim to establish specific spheroid models and platforms to answer the pressing and relevant questions currently in cancer research.
Learning Objectives: