MENU
AUG 30, 2016 8:00 AM PDT

Disease modeling in pluripotent stem cell-derived cardiomyocytes

Speaker
  • Professor in Stem Cell Biology, University of Nottingham, United Kingdom
    Biography
      Chris Denning is a Professor in Stem Cell Biology, with particular interests in cardiomyocyte (heart cell) differentiation of human embryonic and induced stem cells for use in drug screening and in production of new In vitro models of genetic-based cardiovascular disease. This includes manipulation of the genome using transgenic and nuclease-mediated gene targeting technologies (including Cas9/CRISPR). In parallel, Chris has also focused on optimisation of the culture environment and robotic culture to allow fully automated scale-up and high throughput screening, using high content electrophysiology and imaging.

    Abstract
    Over the last 15 years, human pluripotent stem cell (hPSC) technologies have progressed from academic curiosities into tools with the promise to underpin commerce, leading to real progress in understanding of disease, improving drug safety and providing novel routes to clinical translation. With an emphasis on the heart, this presentation will discuss our progress in producing models of genetic disease by reprogramming somatic cells into human induced pluripotent stem cell (hiPSC). This includes various conditions such as long QT syndrome, Duchenne muscular dystrophy and CPVT, which affect the function and / or structure of cardiomyocytes. We will show how the Cas9/CRISPR system is being used to produce defined sets of polymorphisms in the ADRB2R and GRK5 loci, which encode proteins that underpin b2-adrenoceptor signaling. These polymorphisms reflect the genotypes in the patient population and we will present early data on how these changes may influence receptor density, internalization and both receptor and heart function. Since these panels of hiPSC and engineered lines can now be created with relative ease, bottlenecks of scaled culture, differentiation and phenotyping are becoming a considerable issue. Thus, we have developed an automation suite that includes a bespoke robotic platform to culture and differentiate hPSCs at scale into cardiomyocytes. Into this suite, we have incorporated high content platforms that allow assessment of structure (confocal plate reader imaging) and function (mitochondrial activity, contractility and electrophysiology). Despite these advances, numerous challenges remain, such as incomplete epigenetic reprogramming of hiPSC relative to hESCs and insufficient levels of expression of key ion channels, which need to be considered for the applicability of these models in biomedical application.
     

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    JUN 09, 2020 3:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2020 3:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 9, 2020 TIME: 6am PT, 9am ET, 3pm CEST The importance of disposable plastic consumables and their overall impact on the experimental workflow of qPCR has been taken into considera...
    MAY 13, 2020 4:00 PM CEST
    C.E. CREDITS
    MAY 13, 2020 4:00 PM CEST
    DATE: May 13, 2020 TIME: 7am PT, 10am ET, 4pm CEST Stem cells represent an important tool in a wide range of applications, including basic research, disease modeling, drug discovery, and reg...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources
    Attendees
    • See more