MENU
AUG 30, 2016 8:00 AM PDT

Disease modeling in pluripotent stem cell-derived cardiomyocytes

Speaker

Abstract
Over the last 15 years, human pluripotent stem cell (hPSC) technologies have progressed from academic curiosities into tools with the promise to underpin commerce, leading to real progress in understanding of disease, improving drug safety and providing novel routes to clinical translation. With an emphasis on the heart, this presentation will discuss our progress in producing models of genetic disease by reprogramming somatic cells into human induced pluripotent stem cell (hiPSC). This includes various conditions such as long QT syndrome, Duchenne muscular dystrophy and CPVT, which affect the function and / or structure of cardiomyocytes. We will show how the Cas9/CRISPR system is being used to produce defined sets of polymorphisms in the ADRB2R and GRK5 loci, which encode proteins that underpin b2-adrenoceptor signaling. These polymorphisms reflect the genotypes in the patient population and we will present early data on how these changes may influence receptor density, internalization and both receptor and heart function. Since these panels of hiPSC and engineered lines can now be created with relative ease, bottlenecks of scaled culture, differentiation and phenotyping are becoming a considerable issue. Thus, we have developed an automation suite that includes a bespoke robotic platform to culture and differentiate hPSCs at scale into cardiomyocytes. Into this suite, we have incorporated high content platforms that allow assessment of structure (confocal plate reader imaging) and function (mitochondrial activity, contractility and electrophysiology). Despite these advances, numerous challenges remain, such as incomplete epigenetic reprogramming of hiPSC relative to hESCs and insufficient levels of expression of key ion channels, which need to be considered for the applicability of these models in biomedical application.
 

Show Resources
You May Also Like
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
SEP 29, 2022 7:00 AM PDT
SEP 29, 2022 7:00 AM PDT
Date: September 29, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) Development and evolution are controlled, to a large degree, by regions of genomic DNA called enhancers that encode...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
SEP 28, 2022 7:00 AM PDT
SEP 28, 2022 7:00 AM PDT
Date: September 28, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) CRISPR/Cas gene editing technology has rapidly evolved over the last decade. Its versatility extends from creating t...
Loading Comments...
Show Resources