MENU
AUG 30, 2016 8:00 AM PDT

Disease modeling in pluripotent stem cell-derived cardiomyocytes

Speaker
  • Professor in Stem Cell Biology, University of Nottingham, United Kingdom
    Biography
      Chris Denning is a Professor in Stem Cell Biology, with particular interests in cardiomyocyte (heart cell) differentiation of human embryonic and induced stem cells for use in drug screening and in production of new In vitro models of genetic-based cardiovascular disease. This includes manipulation of the genome using transgenic and nuclease-mediated gene targeting technologies (including Cas9/CRISPR). In parallel, Chris has also focused on optimisation of the culture environment and robotic culture to allow fully automated scale-up and high throughput screening, using high content electrophysiology and imaging.

    Abstract
    Over the last 15 years, human pluripotent stem cell (hPSC) technologies have progressed from academic curiosities into tools with the promise to underpin commerce, leading to real progress in understanding of disease, improving drug safety and providing novel routes to clinical translation. With an emphasis on the heart, this presentation will discuss our progress in producing models of genetic disease by reprogramming somatic cells into human induced pluripotent stem cell (hiPSC). This includes various conditions such as long QT syndrome, Duchenne muscular dystrophy and CPVT, which affect the function and / or structure of cardiomyocytes. We will show how the Cas9/CRISPR system is being used to produce defined sets of polymorphisms in the ADRB2R and GRK5 loci, which encode proteins that underpin b2-adrenoceptor signaling. These polymorphisms reflect the genotypes in the patient population and we will present early data on how these changes may influence receptor density, internalization and both receptor and heart function. Since these panels of hiPSC and engineered lines can now be created with relative ease, bottlenecks of scaled culture, differentiation and phenotyping are becoming a considerable issue. Thus, we have developed an automation suite that includes a bespoke robotic platform to culture and differentiate hPSCs at scale into cardiomyocytes. Into this suite, we have incorporated high content platforms that allow assessment of structure (confocal plate reader imaging) and function (mitochondrial activity, contractility and electrophysiology). Despite these advances, numerous challenges remain, such as incomplete epigenetic reprogramming of hiPSC relative to hESCs and insufficient levels of expression of key ion channels, which need to be considered for the applicability of these models in biomedical application.
     

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    JUN 03, 2021 12:00 PM CST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
    Loading Comments...
    Show Resources
    Attendees
    • See more