MENU

Distinct Metabolic Profiling of Invading PANC-1 Pancreatic Cancer Cells

Speaker
  • Senior Investigator, National Institutes for Quantum and Radiological Science and Technology, Japan
    BIOGRAPHY

Abstract

During this webcast Dr. Mayumi Fujita of the National Institutes for Quantum and Radiological Science and Technology in Japan will address the method of real-time imaging of invading cells using the IncuCyte Live-Cell Analysis System, and describe how this model is useful for many studies.

In previous studies, only 1% of cells in the cultured human pancreatic cancer cell line, PANC-1, were capable of invasion through MatrigelÆ in a transwell invasion assay. This suggested that invasive PANC-1 cells have unique characteristics conferring this phenotype. This was further investigated using a 3D spheroid model of PANC-1, embedded in Matrigel, coupled with IncuCyteÆ Live Cell imaging and analysis to capture the movement of the distinct invading population in real time. The identified, invasive PANC-1 were collected and metabolically characterized by CE-TOFMS, and their metabolic profile compared with whole-culture PANC-1. (Fujita et al. 2017, Cancer Science). The invasive PANC-1 cells were distinct from those of the whole cultured PANC-1, with demonstrated increased consumption of ATP, assumed activation of ATP-generating pathways, and higher arginine utilization by NOS. Although they had higher oxidative stress, the invading cells were also more resistant to it with greater survival upon exposure to H2O2. A reduction of intracellular GSH by BSO inhibited PANC-1 invasiveness. Taken together, these results provide a unique metabolic profile for this invasive PANC-1 cell population, as compared to control cells. Such methodology is readily available for similar assessments of invasive cell phenotypes.

You will learn:

  • A method will be provided for the real-time imaging of cancer cell invasion from 3D spheroid using the IncuCyteÆ Live-Cell Analysis System.
  • The utility of this model to study cancer cell invasion will be discussed, describing methods of invasion, including that by single cells, collected cells, elongated invasion, or rounded invasion.
  • Important methods information for real-time image capture, identification of invasive phenotypes, and integration with metabolomics analysis.
  • How to easily apply the use of IncuCyte technology and associated applications to their cell line of interest for related studies.

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
JUN 24, 2021 10:00 AM PDT
C.E. CREDITS
JUN 24, 2021 10:00 AM PDT
Date: June 24, 2021 Time: 10:00am PDT The Chan Zuckerberg Initiative (CZI) was founded to help solve some of society’s toughest challenges— from eradicating disease and improving...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...

Distinct Metabolic Profiling of Invading PANC-1 Pancreatic Cancer Cells


No demographic data is available yet for this event.


Show Resources
Loading Comments...
Show Resources