MAY 12, 2016 10:30 AM PDT

DNA methylation analysis by multiplexed reduced representation bisulfite sequencing

Speaker

Abstract

DNA methylation is an essential mechanism of epigenetic gene regulation with broad relevance in development and disease. Its localization on genomic DNA and general stability make this epigenetic mark an attractive target for large-scale studies in cancer research, developmental biology and ecology. In recent years, microarray-based technologies have been gradually replaced by more robust, accurate and versatile next generation sequencing-based methods. 
    
This presentation will introduce highly-multiplexed reduced representation bisulfite sequencing as a cost-effective means for large DNA methylation studies. The protocol provides a single-base resolution read-out of 5-methylcytosine, while avoiding the cost of whole-genome sequencing. Based on an enzymatic enrichment step, the method is cost-effective, but provides excellent coverage of promoter regions, CpG islands, and other genomic elements such as enhancers and CpG island shores. At the same time, the protocol supports high-throughput applications, is suitable for any vertebrate species and has been optimized specifically for formalin-fixed, paraffin-embedded samples.

In our lab, we have successfully used RRBS on over 2000 samples comprising many different vertebrate species, various cancers, FFPE and low-input samples, and are happy to share our experience with the epigenomics community.

Learning objectives:

  • the talk will introduce highly multiplexed reduced representation bisulfite sequencing as a cost-effective means for large DNA methylation studies
  • get an overview of the required bioinformatic workflow, for an easy transition from microarrays to next generation sequencing-based analyses

Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
MAY 12, 2016 10:30 AM PDT

DNA methylation analysis by multiplexed reduced representation bisulfite sequencing



Show Resources
Loading Comments...
Show Resources