MENU
AUG 30, 2016 8:00 AM PDT

Elucidating the physiological function of cellular PrPC using human iPS cel

Speaker
  • Postdoctoral Fellow, University of Zurich, Switzerland
    Biography
      Vijay Chandrasekar was born in the southern part of India called Tamil Nadu. He did his Master studies in microbial gene technology in Madurai Kamaraj University. Following that he worked as a research associate in the premier institute in India called India Institute of Science, where he worked on protein biochemistry and crystallography, where he was successfully involved in structure determination of several viral proteins. For his PhD, Vijay moved to Switzerland in 2010, where he did his doctoral studies in molecular neuroscience on "Characterization of microRNA and transcription factor gene network in cocaine induced neuroplasticity" in the University of Fribourg, Switzerland. His studies established the role of miRNAs in the addiction and neuronal plasticity induced by drugs of abuse in the brain for the very first time and resulted in several highly cited publications. After his PhD, Vijay moved to US to pursue his first postdoctoral fellowship at Columbia University Medical Center under the renowned scientist Prof. Tom Maniatis. during which time, he had his own Helmsley stem cell starter grant in CUMC for his studies on ALS disease using human iPS cells. Vijay worked on two interesting projects (a) HILO-RMCE based generation of iPS cells for studying C9orf72 mutation in ALS; (b) "Identifying the role of miRNAs in astrocyte dependent, non-cell autonomous motor neuron toxicity". He successfully initiated footprint-free reprogramming for in vitro disease modelling using iPS cells. Vijay is currently pursuing his second postdoctoral Scientist position in the Institute of Neuropathology, University Hospital Zurich, Switzerland, working under Prof. Adriano Aguzzi on "Establishing stem cell based systems ES and iPS cells for studying prion mutation in CJD". For the past almost 6 years, he has been working on mouse and human stem cells, both ES and iPS, to derive neurons and other cell lineages for disease modelling, characterization, and drug screening assays using variety of state-of-the-art methods like survival, morphometric measurements, RNAseq, and proteome analysis. Vijay has established the model systems in CUMC and in the University Hospital, Zurich as well as in our collaborative labs in Zurich.

    Abstract
    PrPC is a conserved lipid-raft associated, GPI-anchored cell membrane glycoprotein. Misfolding of cellular PrPC into the pathogenic PrPSc results in Prion disease, an untreatable and fatal neurodegenerative disorder. Prion induced neurotoxicity is preceded by impairment in metabolism of cholesterol and other lipids which are major component of lipid-rafts in affected neurons. Lipid-rafts deregulation has been implicated in diseases like Prion and AD, the mechanism remains unclear. Understanding the function of cellular PrPC may shed light on such pathological mechanisms. Towards this goal, we utilize a human induced pluripotent stem (iPS) cell model system. We generated isogenic PrP knockout (KO) human primary fibroblasts in order to reprogram them into PrP-KO-iPS cells and human neurons. Metabolomics and RNAseq analysis of these PrP-KO human cells show dysregulation in key CNS pathways like glycerophospholipid and cholesterol metabolism. Here we present a systems biological approach combining RNAseq and metabolomics to understand the functional molecular network of PrPC. The knowledge of key pathways in which PrPC  has important implications could aid in the targeted therapy for prion disorders

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    APR 21, 2021 5:00 PM CEST
    APR 21, 2021 5:00 PM CEST
    Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    DEC 16, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    Loading Comments...
    Show Resources
    Attendees
    • See more