MAY 14, 2015 1:30 PM PDT

Epigenomic Profiles of Asthma

Speaker
  • Associate Professor, Department of Medicine, University of Colorado School of Medicine, Department of Epidemiology, Colorado School of Public Health, Integrated Center for Genes, Environment,
    Biography
      I have a broad background in genomics, genetics, and bioinformatics. As a postdoctoral fellow with John Quackenbush, I identified gene expression fingerprints for molecular classification of tumors and outcome prediction in colon cancer. As an Assistant Research Professor at Duke University and then a Staff Scientist at the National Institutes of Health (NIH), I worked with David Schwartz to identify novel innate immune genes in mice by using genetic and genomic approaches. As the Deputy Director for the Center for Genes, Environment and Health, I provided oversight of next-generation sequencing, expression profiling, genotyping, and epigenomic technologies at National Jewish Health.
      My current research broadly centers on the role of genetic and epigenetic factors in complex diseases. The overarching goals of my research are to use genetics and genomics to enhance early detection, predict outcome, develop biomarkers, and design personalized therapeutic strategies in non-malignant diseases. Specific current disease areas of interest include asthma and allergy, pulmonary fibrosis, chronic beryllium disease, diabetes and obesity. Human cohorts as well as animal and cell models are used to pursue these studies.

    Abstract

    Asthma is heritable, influenced by the environment, and is modified by in utero exposures and aging; all of these features are also common to epigenetic regulation. Furthermore, genetic variants that have been identified to date explain a small portion of asthma heritability. Finally, the transcription factors that are involved in the development of mature T cells that are critical to the Th2 immune phenotype in asthma are regulated by epigenetic mechanisms. Our group was the first to demonstrate a causal relationship between DNA methylation marks and both Th2 immunity and allergic airway disease in mice. We have also shown that DNA methylation marks in Th2 immune genes are associated with asthma and gene expression changes in peripheral blood mononuclear cells (PBMCs) from children in the inner city. We have also found pronounced changes in DNA methylation and gene expression in nasal epithelia of allergic asthmatics, suggesting that genes previously identified as important in the asthmatic airway epithelium appear to be epigenetically regulated. Our findings that epigenetic marks in immune cells and respiratory epithelia are associated with allergic asthma provide new targets for understanding the biology of the disease, developing biomarkers of exposure or disease, and potentially identifying novel therapeutic approaches for this disease. Learning Objectives 1. Discuss how epigenetic marks are influenced by the environment and are important in T cell lineage differentiation 2. Explain the association of epigenetic marks with asthma and disease subtypes


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    NOV 10, 2020 7:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    Loading Comments...
    Show Resources
    Attendees
    • See more