NOV 15, 2019 8:00 AM PST

Exosomes and super-resolution microscopy

Sponsored by: ONI
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Research Associate, The University of North Carolina at Chapel Hill
    Biography
      Dr. Ryan McNamara's research focuses on multiple facets of AIDS progression, from cellular infection with HIV to how concurrent infections and/or malignancies affect HIV pathogenesis. Through investigations into these processes, we can increase our knowledge of basic cellular biology as well as identify pathways amenable to targeted therapies.

    Abstract
    DATE:  November 15, 2019
    TIME:   8:00am PST, 11:00am EST
     
    Exosomes are small vesicles, ranging from 30-120 nanometers in diameter, secreted from cells throughout the human body. They are marked on their surface by proteins termed ‘tetraspanins’, aptly named as they contain four transmembrane proteins. Examples of these tetraspanins include CD9, CD45, CD63, and CD81, and they provide structural integrity to the exosome membrane. Exosomes facilitate in homeostasis by transferring active biologics from donor cells to recipient cells, modulating the recipient cells’ phenotype. Given their small size, exosomes can present daunting challenges in visualization. Modern techniques to view them include: nanoparticle tracking analysis, electron microscopy, and atomic force microscopy. We previously developed a novel pipeline for the production and isolation of exosomes to higher concentrations and purities than other currently employed methodologies. We wanted to expand upon this system by being able to fluorescently visualize intracellular maturation of exosomes from the donor cells and their subsequent uptake in recipient cells at the nanometer level. From this approach, we could have a fully tractable system from exosome biogenesis to endocytosis. To accomplish this, we created clonal cell lines expressing eGFP- or mCherry-conjugated CD9, CD63, CD81, and combinations thereof. These fluorescently tagged integral membrane proteins can be visualized and localized to high precision using super-resolution microscopy inside of the producer cell (i.e. during exosome biogenesis). Isolation of the exosome yields vividly bright pellets, and their addition to naïve cells can be visualized again using super-resolution microscopy. In summary, we have developed a nanometer-scale workflow for the visualization of de novo synthesized exosomes, their purification from cell-free fluids, and how their cargo is trafficked in recipient cells.
     
    Learning Objectives:
    • For microscopists, molecular biologists and immunologists, we will demonstrate the role of tetraspanin proteins in tracking exosome maturation inside of the cell. The participant will visualize the process which will demonstrate a greater understanding of the vital role of tetraspanin development in the cell.
    • We will demonstrate the relevance of super-resolution microscopy to visualize and characterize extracellular vesicles to understand their relevance in research. Upon completion, the listener will be able to utilize this tool to analyze exosomes and extracellular vesicles at the single-molecule level to enhance the understanding of the role they play in disease.
     
     
    Webinars will be available for unlimited on-demand viewing after live event.
     
    LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.

    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 19, 2020 11:00 AM PST
    C.E. CREDITS
    FEB 19, 2020 11:00 AM PST
    DATE: February 19, 2020TIME: 11:00am PST, 2:00pm EST...
    NOV 07, 2019 10:00 AM PST
    C.E. CREDITS
    NOV 07, 2019 10:00 AM PST
    DATE: November 7, 2019TIME: 10:00am PST, 1:00pm EST Studying the pathogenesis of diabetes requires detailed analysis of the pancreatic islet microenvironment and its numerous c...
    Loading Comments...
    Show Resources