OCT 10, 2019 10:30 AM PDT

Whole genome imaging for sensitive and accurate analysis of structural variations in cancer

Sponsored by: Bionano Genomics
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

Accumulation of structural variations (SVs) across the genome is a known trigger factor for oncogenesis. Structural mutations have been clearly implicated in a number of cancers, most notably translocations that result in druggable fusions involving genes such as NTRK, MPRSS2, RET, FGFR3, ALK, and ESR1.  Identifying these structural genomic alterations - accurately and comprehensively - is crucial for improving research and ultimately therapies for cancer patients, yet one of primary challenges when solely relied on short read sequencing and standard cytogenetic methods (e.g. karyotyping, FISH and chromosomal microarrays).
 
Whole genome imaging, enabled by the Bionano Saphyr® System, is quickly becoming established as a key method for detection of intractable types of structural variations. The Saphyr System images ultra-long, linearized DNA molecules labeled at specific sequence motifs. Comparative analysis of the label patterns over long contiguous reads across the whole genome, reveals structural variants (>500 bp), at sensitivities as high as 99%, with false positive rates below 2%, even at allele fractions as low as 5%. Whole genome imaging can accurately assemble and assay relevant regions for complex genomic disorders like cancer as well as for repeat expansion disorders, even those involving very large segmental duplications. Bioinformatics tools, an integral part of the Saphyr System, effectively prioritize the ~6000 structural variants based on the estimated frequency in a control population, whether it’s inherited germline or de novo, whether it’s somatic and also its proximity to a gene. As a case in point, whole genome imaging has to date unraveled a number of genes never implicated in cancer and shown how they are affected by structural variations, along with deciphering novel structural variants. Hence, combining whole genome imaging with whole genome sequencing offers a strong integrative approach to understand small and large genomic variations in cancers.

 

For Research Use Only. Not for use in diagnostic procedures.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
OCT 10, 2019 10:30 AM PDT

Whole genome imaging for sensitive and accurate analysis of structural variations in cancer

Sponsored by: Bionano Genomics
C.E. Credits: P.A.C.E. CE Florida CE

Specialty

Gene Sequencing

Molecular Biology

Genomics

Dna

Biomarkers

Gene Expression

Immunology

Genetics

Dna Sequencing

Clinical Diagnostics

Infectious Disease

Antibodies

Molecular Diagnostics

T-Cells

Drug Discovery

Geography

North America56%

Asia33%

Europe11%

Registration Source

Website Visitors100%

Job Title

Educator/Faculty33%

Research Scientist33%

Student17%

Lab Management17%

Organization

Academic Institution67%

Clinical Laboratory22%

Government11%


Show Resources
Loading Comments...
Show Resources