JUN 21, 2018 12:00 PM PDT

Whole Genome Sequencing As A Valuable Clinical Tool For the Management of Cancer Patients

C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Professor and Consultant, Department of Laboratory Medicine and Pathology, Mayo Clinic
    Biography
      David I Smith received his Ph.D. in Biochemistry from the University of Wisconsin in Madison in 1978 studying antibiotic resistance in bacteria. After doing post-doctoral work first at the Albert Einstein College of Medicine and then at the University of California, Irvine, he got his first faculty position at Wayne State University in 1985. In 1996 he joined the Mayo Clinic as a full Professor in the Department of Laboratory Medicine and Pathology. His laboratory studies the common fragile sites which are regions of profound genomic instability that are found in all individuals. His laboratory also studies the various ways that human
      papillomavirus is involved in the generation of different cancers. Dr. Smith is also the Chairman of the Technology Assessment Group for the Mayo Clinic Center for Individualized Medicine. The role of this group is to evaluate new technologies that could have a profound impact on basic research and its' clinical translation. The most exciting technology that has the greatest potential to change both research and clinical practice is next generation sequencing and Dr. Smith and his group have been using this technology to answer scientific questions. The advances in next generation sequencing over the past 10 years have been nothing
      short of incredible and it is now possible to generate terrabases of DNA sequence in a single run of a next generation sequencer. This technology can be utilized in a number of ways from characterizing just a few genes all the way to whole genome sequencing.

    Abstract:

    Advances in DNA sequencing, based upon massively parallel sequencing, has resulted in dramatic advances in DNA sequence output in the past few years. It is now possible to generate terrabases of accurate DNA sequence with a single run on several DNA sequencing platforms. This has then made it possible to characterize alterations that occur during cancer development. Genomic alterations can be characterized by targeted sequencing of genes that are frequently altered during cancer development, by sequencing of the entire exome, transcriptome sequencing, and even by whole genome sequencing. Each of these has their own inherent strengths and weaknesses. I will describe why I believe that the best strategy moving forward for the management of cancer patients is whole genome sequencing (WGS). This can currently be done reliably and inexpensively on two completing platforms. The first is the Illumina sequencing platform and the second is from BGI. WGS is a comprehensive technology that can detect all the alterations in a cancer genome and I will describe how and why this may prove to be the best approach for the management of cancer patients.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    MAR 26, 2019 02:00 PM PDT
    C.E. CREDITS
    MAR 26, 2019 02:00 PM PDT
    DATE:  March 26, 2019TIME:  2:00pm PDT, 5:00pm EDT  Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time t...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    Loading Comments...
    Show Resources