MAY 21, 2019 7:00 AM PDT

Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function

Speaker
  • Postdoctoral Fellow, Department of Microbiology and Immunology, University of California, San Francisco
    Biography
      Eric Shifrut is a postdoctoral fellow in Alexander Marson's group at the University of California, San Francisco. Eric completed his PhD at the Weizmann Institute of Science in Israel, under supervision of Prof. Nir Friedman. In his thesis work, Eric developed computational and experimental platforms to map the landscape of T cell receptor repertoires in health and disease. Since joining the Marson lab in 2016, Eric has been working to pioneer CRISPR applications in primary human T cells. These efforts aim to design discovery platforms to explore and exploit genetic circuits to boost T cell function in cancer immunotherapy.

    Abstract
    DATE:  May 21, 2019
    TIMEL  7:00am PT, 10:00am ET
     
    Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioritize novel targets for drug development and improve the design of genetically reprogrammed cell-based therapies. However, large-scale CRISPR screens have been challenging in primary human cells. Critical biology of human immune cells, including key signaling pathways and effector functions, may not be recapitulated in immortalized cell lines. We developed a new method, sgRNA lentiviral infection with Cas9 protein electroporation (SLICE), to identify regulators of stimulation responses in primary human T cells. Genome-wide loss-of-function screens identified essential T cell receptor signaling components and genes that negatively tune proliferation following stimulation. Targeted ablation of individual candidate genes characterized hits and identified perturbations that enhanced cancer cell killing. SLICE coupled with single-cell RNA-Seq revealed signature stimulation-response gene programs altered by key genetic perturbations. SLICE genome-wide screening was also adaptable to identify mediators of immunosuppression, revealing genes controlling responses to adenosine signaling. In summary, we have developed a novel pooled CRISPR screening technology with the potential to explore unmapped genetic circuits in primary human cells and to guide the design of engineered cell therapies.
     
    Learning Objectives:
    • Identify the components of a new pooled CRISPR screening technique (SLICE) using molecular biology
    • Understand how to explore unmapped genetic circuits in primary human cells using SLICE
    • Learn how to design engineered cell therapies using SLICE
     
     
     
     
    Webinars will be available for unlimited on-demand viewing after live event.
     
    LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.

    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources
    Attendees
    • See more