MENU

Genomic profiling reveals novel PAX7 targets CD54, integrin α9β1 and SDC2, as markers for isolation of human ES/iPS cell-derived muscle progenitors

Speaker

Abstract

Therapeutic application of pluripotent stem (PS) cell-derived products represents the ultimate goal of stem cell research. In order to apply this technology to patients, it is fundamental to characterize in detail the cell population of interest and identify strategies for its purification from unwanted cells using clinically-compatible methods. In the case of skeletal muscle wasting disorders, we have shown that human PS cell-derived PAX7-induced myogenic progenitors may represent an excellent candidate for cell therapy. To successfully translate this approach toward the clinic, we took advantage of next-generation sequencing techniques to dissect PAX7 function during human myogenesis. Combination of PAX7 genomic target profiling using ChIP-seq and whole transcriptome analysis (RNA-seq), in which we systematically evaluated different time points of the PAX7-dependent myogenic commitment from human PS cells, revealed a subset of genes differentially expressed at various stages of this differentiation process, including a discrete number of surface markers. After Fluorescence Activated Cell Sorting (FACS)-mediated screening, we identified α9β1 integrin, CD54 and Syndecan2 (SDC2), as potential surface markers to be used for the prospective isolation of human PS cell-derived myogenic progenitors. We demonstrate that these surface molecules reproducibly allow for the isolation of myogenic progenitors from multiple human ES/iPS cell lines, in both serum- and serum-free culture conditions, and that α9β1+CD54+SDC2+ (triple+) cells represent a homogenous population of PAX7+ cells endowed with in vivo muscle regeneration potential. Furthermore, we demonstrate that a single marker is sufficient for the magnetic-based isolation of myogenic progenitors, thus enabling adaptation of our differentiation protocol to cGMP standards. These novel findings provide a clinically relevant method for the purification of PS cell-derived muscle progenitors for clinical applications.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...

Genomic profiling reveals novel PAX7 targets CD54, integrin α9β1 and SDC2, as markers for isolation of human ES/iPS cell-derived muscle progenitors


No demographic data is available yet for this event.


Show Resources
Loading Comments...
Show Resources