MENU

Genomic profiling reveals novel PAX7 targets CD54, integrin α9β1 and SDC2, as markers for isolation of human ES/iPS cell-derived muscle progenitors

Speaker

Abstract

Therapeutic application of pluripotent stem (PS) cell-derived products represents the ultimate goal of stem cell research. In order to apply this technology to patients, it is fundamental to characterize in detail the cell population of interest and identify strategies for its purification from unwanted cells using clinically-compatible methods. In the case of skeletal muscle wasting disorders, we have shown that human PS cell-derived PAX7-induced myogenic progenitors may represent an excellent candidate for cell therapy. To successfully translate this approach toward the clinic, we took advantage of next-generation sequencing techniques to dissect PAX7 function during human myogenesis. Combination of PAX7 genomic target profiling using ChIP-seq and whole transcriptome analysis (RNA-seq), in which we systematically evaluated different time points of the PAX7-dependent myogenic commitment from human PS cells, revealed a subset of genes differentially expressed at various stages of this differentiation process, including a discrete number of surface markers. After Fluorescence Activated Cell Sorting (FACS)-mediated screening, we identified α9β1 integrin, CD54 and Syndecan2 (SDC2), as potential surface markers to be used for the prospective isolation of human PS cell-derived myogenic progenitors. We demonstrate that these surface molecules reproducibly allow for the isolation of myogenic progenitors from multiple human ES/iPS cell lines, in both serum- and serum-free culture conditions, and that α9β1+CD54+SDC2+ (triple+) cells represent a homogenous population of PAX7+ cells endowed with in vivo muscle regeneration potential. Furthermore, we demonstrate that a single marker is sufficient for the magnetic-based isolation of myogenic progenitors, thus enabling adaptation of our differentiation protocol to cGMP standards. These novel findings provide a clinically relevant method for the purification of PS cell-derived muscle progenitors for clinical applications.


Show Resources
You May Also Like
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
APR 28, 2022 8:00 AM PDT
APR 28, 2022 8:00 AM PDT
Date: April 28, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Human pluripotent stem cells (PSCs) and their derivatives hold great potentials in...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...

Genomic profiling reveals novel PAX7 targets CD54, integrin α9β1 and SDC2, as markers for isolation of human ES/iPS cell-derived muscle progenitors



Show Resources
Loading Comments...
Show Resources
Attendees