MAR 13, 2019 7:40 AM PDT

BRAIN Initiative Scientific Updates: How the Human Brain Learns to Learn

Presented at: Neuroscience 2019
Speaker

Abstract

The human brain has a remarkable ability to store and retrieve information. Detailed memories can be formed after as little as one exposure, and those memories can be retained for decades. Importantly, recent studies have demonstrated the critical role of a mental “schema”, or a learned cognitive structure, in supporting rapid memory formation. In essence, previously acquired knowledge provides a framework that shapes how ongoing experience is perceived and remembered. This resonates with the older idea from neuropsychology of “learning to learn” as a mechanism by which rapid learning might be accomplished. Learning to learn is thought to facilitate new learning by reducing the dimensionality of the space that the organism has to search to adapt to novel problems. The development of a schema that supports this kind of rapid learning is thought to involve interactions between the hippocampus and the neocortex. However, the neural circuitry that underlies this kind of rapid, one-trial, learning is not well-understood.

Here, using innovative techniques for large-scale recordings in monkeys and in human epilepsy patients, we capitalize on the unique opportunity to establish cross-species comparisons of hippocampal-neocortical interactions. We record single unit activity as well as the local field potential from homologous brain areas in humans and monkeys, and we investigate this neural activity as humans and monkeys perform identical behavioral tasks of rapid learning and schema formation. In parallel, computational modeling and theoretical work provides an important iterative loop for evaluating our experimental hypotheses. Recently, advances in the modeling of recurrent neural networks provide a very promising framework within which to interpret the kind of complex data we will be gathering. By training artificial networks to perform the same tasks as our experimental subjects, these learned dynamics serve as a plausible network implementation of the cognitive computation.  We can then examine these networks to discover the hidden dynamical structure of these computations, and to develop hypotheses for how the biological network may implement them. The overall goal of this U-19 Program is to develop a comprehensive theory of the circuit mechanisms that underlie the human brain’s ability to establish neural frameworks that enable rapid new learning.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
DEC 16, 2020 8:00 AM PST
C.E. CREDITS
DEC 16, 2020 8:00 AM PST
Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
MAR 18, 2021 8:00 AM PDT
C.E. CREDITS
MAR 18, 2021 8:00 AM PDT
DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
MAR 13, 2019 7:40 AM PDT

BRAIN Initiative Scientific Updates: How the Human Brain Learns to Learn

Presented at: Neuroscience 2019

Specialty

Brain

Psychology

Animal Models

Neurobiology

Animal Behavior

Crispr

Clinical Lab

Scientific Writing

Clinical Diagnostics

Biology

Neuron

Cancer Therapeutics

Laboratory Testing

Drug Abuse

Assay Development

Geography

North America40%

Asia20%

Registration Source

Website Visitors100%

Job Title

Clinical Laboratory Scientist67%

Post Doc33%

Organization

Independent Laboratories20%

Hospital20%

Medical Device Company20%

Other40%


Show Resources
Loading Comments...
Show Resources
Attendees
  • See more