AUG 20, 2014 07:00 AM PDT

Human Genome Analysis

Speakers
  • Albert L. Williams Professor of Biomedical Informatics, Co-Director, Yale Computational biology and Bioinformatics Program, Yale University
    Biography

       
      Mark Gerstein is the Albert L Williams professor of Biomedical Informatics at Yale University. He is co-director the Yale Computational Biology and Bioinformatics Program, and has appointments in the Department of Molecular Biophysics and Biochemistry and the Department of Computer Science. He received his AB in physics summa cum laude from Harvard College and his PhD in chemistry from Cambridge. He did post-doctoral work at Stanford and took up his post at Yale in early 1997. Since then he has published appreciably in scientific journals. He has >400 publications in total, with a number of them in prominent journals, such as Science, Nature, and Scientific American. (His current publication list is at http://papers.gersteinlab.org .) His research is focused on bioinformatics, and he is particularly interested in large-scale integrative surveys, biological database design, macromolecular geometry, molecular simulation, human genome annotation, gene expression analysis, and data mining. 
       
       

    Abstract:

    The ENCODE and modENCODE consortia have generated a resource containing large amounts of transcriptomic data, extensive mapping of chromatin states, as well as the binding locations of >300 transcription factors (TFs) for human, worm and fly. We performed extensive data integration by constructing genome-wide co-expression networks and transcriptional regulatory models, revealing fundamental principles of transcription conserved across the three highly divergent animals.
    In particular, we found the gene expression levels in the organisms, both coding and non-coding, can be predicted consistently based on their upstream histone marks. In fact, a "universal model" with a single set of cross-organism parameters can predict expression level for both protein coding genes and ncRNAs. Carrying out the same type of "predictions" for TFs, we found that information in their binding is more localized to near the TSS region than that of histone marks but is largely redundant with that of the marks.
    Surprisingly, only a small number of TFs are necessary in the models to successfully predict expression (e.g. ~5 of the >1000 in human).


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    MAY 02, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 02, 2018 08:00 AM PDT
    Immunohistochemistry protocols, which utilize antibodies to visualize proteins in tissue sections, have many steps that need optimized to prevent non-specific background effects, artifacts, o...
    Loading Comments...