OCT 07, 2020 10:30 AM PDT

Immune correlates of TP53 mutational status in acute myeloid leukemia

Sponsored by: NanoString Technologies
C.E. Credits: Florida CE P.A.C.E. CE
Speaker

Abstract

Tumor phenotypes are dictated not only by the neoplastic cell component, but also by the tumor microenvironment (TME), which is inherently immuno-suppressive, is equipped to hamper effector T-cell function and includes immune and inflammatory cells, soluble mediators such as interferon (IFN)-gamma and extracellular matrix components. Acute myeloid leukemia (AML) is characterized by clonal expansion of poorly differentiated myeloid precursors, resulting in impaired hematopoiesis and often bone marrow (BM) failure. TP53 mutations occur in 8-10% of de novo AML and are associated with chemotherapy refractoriness and with poor prognostic features. Our multi-institutional study was undertaken to characterize the immune ecosystem of non-promyelocytic AML with TP53 mutations using the nCounter™ system (NanoString Technologies Inc., Seattle, WA), with the ultimate goal to implement new immunotherapy agents for patients harboring this molecularly defined subtype of AML. We detected high T-cell infiltration and high expression of immune checkpoints and IFN- signaling molecules in patients with TP53 mutated AML compared with AML subgroups with other risk-defining molecular lesions. We also computed an experimentally derived, TP53-related immune gene signature which stratified survival in a broad cohort of TCGA AML cases. Finally, our correlative analyses in patients with relapsed/refractory AML treated with flotetuzumab, an investigational, bispecific CD123×CD3 DART® molecule, showed therapeutic efficacy in individuals with altered TP53 status and identified immune gene signatures that support the prediction of clinical responses. In conclusion, our study has identified unique immunological profiles in patients with TP53 mutated AML. From a clinical standpoint, ‘immune enriched’ AMLs might be amenable to immunotherapy approaches with T-cell engagers.

Learning Objectives:

1. Learn about unique immunological profiles of patients with acute myeloid leukemia (AML)

2. Explore protein signatures and how they influence immunotherapy treatment choices

3. Learn how digital spatial profiling is impacting the field of oncology

 


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
APR 21, 2021 5:00 PM CEST
APR 21, 2021 5:00 PM CEST
Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
Loading Comments...
Show Resources