Mesenchymal stromal cell (MSC) therapy is a promising option to support endogenous regeneration and immunomodulation. However, the clinical results are contradictory. We think that the recent studies have to major limitations: poor characterization of MSC(like) cell products which were used and the lack of adequate immune monitoring to better understand therapy response, mode-of-action, dose-dependency etc.
Because of their high regenerative and immunomodulatory potency shown in various preclinical models and their well-defined manufactoring process in 3-D bioreactors, we focused on the characterization of placental-expanded mesenchymal like adherent cells (PLX) that are aimed to be applied as allogeneic off-the-shelf product.
Interestingly, by minor manipulation in the manufactoring process, Pluristem generated two related products PLX-PAD and PLX-RAD. Both PLX-cell types were comparable regarding their in vitro differentiation capacity and marker profile (CD73+90+105+45-31-34-) that is typical for MSC-like cells. However, the cells showed different properties in some but not all preclinical models. We hypothesized that the protective effects are mediated by the PLX-cells´ secretome which might be different between PLX-RAD and PLX-PAD cells. In fact, conditioned medium of PLX-RAD expressed a distinct secretome and showed distinct effects in vitro and in vivo. Whole genome DNA methylation analysis and CD screen revealed significant differences between the two products.
PLX-PAD cells are supportive in different tissue regeneration models. In fact, clinical phase I/IIa studies in severe chronic limb ischemia (CLI) and muscle injury demonstrated safety but also clear hints for efficacy. Immune monitoring gave insights into immunogenicity, immune modulation, and dose-related effects which help to design ongoing studies.
In summary, extensive biomarker studies provided mechanistic insights into PLX products and highlighted the need for careful characterization of MSC-like cell products to better understand dosing, indication, mode-of-action etc.
Hepatobiliary cancers, including hepatocellular carcinoma (HCC) and gallbladder cancer (GBC), are strongly linked to chronic inflammation. Recent research using the Olink PEA Technology sugg...
Glioblastoma (GBM) is an aggressive brain tumor characterized by marked intra- and inter-tumoral heterogeneity and inevitable recurrence. Although extracranial metastasis is rare, circulatin...
Rapid urinary antigen testing is widely used for pneumonia diagnosis, yet it often lacks the consistency and traceability required in today’s clinical laboratories. This webinar explor...
Plasma proteomics offers great promise for biomarker discovery, due to the accessibility and diagnostic relevance of blood plasma. Recent advances in instrumentation, particularly the Orbitr...
The University of York has now been using the new mosaic spectral detection module on our existing CytoFLEX LX for over 6 months. This will be a super informal chat about our CytoFLEX experi...
Running a life science incubator today means going beyond providing physical lab space. It requires a smart, scalable digital strategy. In this webinar, we’ll showcase how Pivot Park,...
Loading Comments...
Please update your information
Certificate of Participation
Thank you for choosing Labroots. Please note that a Certificate of Participation does NOT count towards Continuing Education Credits.